Кислород. Молекула, изменившая мир - [60]

Шрифт
Интервал

Взаимодействие света с веществом происходит на уровне фотонов. В процессе фотосинтеза фотоны поглощаются молекулой хлорофилла. Но хлорофилл поглощает не любые фотоны: его возможности определяются структурой связей в молекуле. Хлорофилл растений поглощает фотоны красного света с длиной волны 680 нм. Хлорофилл аноксигенной пурпурной фотосинтезирующей бактерии Rhodobacter sphaeroides относится к другому типу и поглощает фотоны с меньшим уровнем энергии из инфракрасного диапазона (длина волны 870 нм)[39].

Когда хлорофилл поглощает фотон, его внутренние связи получают дополнительную энергию, что приводит к выталкиванию электрона из молекулы. При потере электрона хлорофилл переходит в неустойчивую, реакционноспособную форму. Однако он не может возвратиться в исходное состояние, просто вернув себе свой электрон. Электрон исчезает в молекуле расположенного поблизости белка и передается по цепочке связанных белков — как мяч в регби, переданный через все поле по цепочке игроков[40]. Энергия этого электрона используется для синтеза АТФ, как при митохондриальном дыхании.

Присвоение электрона можно приравнять к присвоению половины атома водорода, поскольку атом водорода состоит всего из одного протона и одного электрона. Чтобы присоединить протон, нужно приложить еще немного усилий. В результате электростатических перестроек положительно заряженный протон (из воды в случае оксигенного фотосинтеза) следует за отрицательно заряженным электроном. В конечном итоге протон и электрон при помощи Рубиско соединяются в атоме водорода в молекуле сахара.

А что происходит с хлорофиллом? Потеряв электрон, он становится гораздо более активным и пытается отнять электрон у ближайшего подходящего донора. Остановить хлорофилл можно так же, как мифического дракона, которого кормили прекрасными девственницами, дабы он не причинял вреда соседним землям. Источником подходящих девственниц — электронов в случае хлорофилла — могут быть любые находящиеся в изобилии химические жертвы, такие как вода, сероводород или железо. Проглотив электрон, хлорофилл возвращается в нормальное состояние, пока новый фотон не запустит следующий цикл реакций.

Какой донор электронов — сероводород, железо или вода — будет задействован в фотосинтезе, зависит от энергии поглощенных хлорофиллом фотонов. Хлорофилл пурпурных бактерий может поглощать только инфракрасные лучи с низким уровнем энергии. Это позволяет извлекать электроны из сероводорода и железа, но не из воды. Чтобы добыть электрон из воды, нужна дополнительная энергия, которую могут обеспечить фотоны с более высоким уровнем энергии. Для этого нужно изменить структуру хлорофилла таким образом, чтобы он стал поглощать не инфракрасный, а красный свет.

Вопрос стоит следующим образом: почему структура хлорофилла изменилась так, что он смог поглощать красный свет и расщеплять воду, в то время как уже существовал хлорофилл пурпурных бактерий, способный экстрагировать электроны из находившихся в изобилии сероводорода и солей железа? В частности, какие внешние условия способствовали эволюции нового и более мощного хлорофилла, способного окислять воду и многие составляющие элементы клетки, тогда как старый хлорофилл был менее реакционноспособным и менее опасным, но мог окислять сероводород?

Техническая сторона вопроса удивительно проста. По данным Роберта Бленкеншипа из Университета Аризоны и Хаймана Гартмана из Института биологических исследований в Беркли (Калифорния), совсем небольшие изменения структуры бактериального хлорофилла могут привести к значительному сдвигу спектра поглощения. Всего два небольших изменения структуры — и бактериохлорофилл а (максимум поглощения при 870 нм) превращается в бактериохлорофилл d (максимум поглощения при 716 нм). В 1996 г. в статье в журнале Nature Хидеаки Миясита и его коллеги из Института морской биотехнологии в Камаиси (Япония) сообщали, что хлорофилл d является основным фотосинтетическим пигментом бактерии Acaryochloris marina, которая расщепляет воду с выделением кислорода. Таким образом, промежуточное звено между бактериохлорофиллом и растительным хлорофиллом не только возможно, но и существует на самом деле. Чтобы превратить хлорофилл d в главный фотосинтетический пигмент растений, водорослей и цианобактерий — хлорофилл а, поглощающий свет с длиной волны 680 нм, — остается сделать еще один шаг.

Таким образом, технически эволюционные стадии превращения бактериохлорофилла в хлорофилл растений вполне осуществимы. Остается вопрос, почему произошло это превращение? Хлорофилл, поглощающий свет с длиной волны 680 нм, гораздо хуже поглощает свет с длиной волны 870 нм. И поэтому он гораздо менее эффективно расщепляет сероводород, так что содержащие его бактерии оказываются в невыгодном положении по сравнению с теми, которые сохраняют исходную версию хлорофилла. Хуже того, переключение на расщепление воды вынуждает бактерию каким-то образом избавляться от токсичного кислорода и всех свободных радикалов, возникающих по ходу процесса, как под действием радиации. Если жизнь не прогнозирует будущее, как она преодолевает негативные последствия таких изобретений?


Еще от автора Ник Лэйн
Вопрос жизни

Почему мы стареем и умираем? Зачем нужно половое размножение? И почему полов два, а не больше? У известного английского биохимика есть ответы и на эти вопросы, но главное – он предлагает неожиданный подход к основным проблемам биологии: как из камней, воды и воздуха появилась жизнь.


Энергия, секс, самоубийство

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.


Лестница жизни

Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.


Рекомендуем почитать
Монеты - свидетели прошлого

Новая книга профессора Московского университета Г. А. Федорова-Давыдова написана в научно-популярной форме, ярко и увлекательно. Она представляет собой очерки истории денежного дела в античных государствах Средиземноморья, средневековой Западной Европе, странах Востока, на Руси (от первых «златников» и «сребреников» князя Владимира до реформ Петра 1)„ рассказывается здесь также о монетах нового времени; специальный раздел посвящен началу советской монетной чеканки. Автор показывает, что монеты являются интересным и своеобразным историческим источником.


Летопись электричества

Книга в легкой и доступной форме рассказывает об истории электротехники и немного касается самого начального этапа радиотехники. Автор дает общую картину развития знаний об электричестве, применения этих знаний в промышленности и технике. В книге содержится огромное количество материала, рисующего как древнейшие времена, так и современность с её проблемами науки и техники. В русской литературе — это первая попытка дать читателю систематическое изложение накопленных в течение веков фактов, которые представляют грандиозный путь развития учения об электричестве и его практического применения.


Погода интересует всех

Когда у собеседников темы для разговора оказываются исчерпанными, как правило, они начинают говорить о погоде. Интерес к погоде был свойствен человеку всегда и надо думать, не оставит его и в будущем. Метеорология является одной из древнейших областей знания Книга Пфейфера представляет собой очерк по истории развития метеорологии с момента ее зарождения и до современных исследований земной атмосферы с помощью ракет и спутников. Но, в отличие от многих популярных книг, освещающих эти вопросы, книга Пфейфера обладает большим достоинством — она знакомит читателя с интереснейшими проблемами, которые до сих пор по тем или иным причинам незаслуженно мало затрагиваются в популярной литературе.


Зеленый пожар

Сорняки — самые древние и злостные враги хлебороба. Зеленым пожаром охвачены в настоящее время все земледельческие районы земного шара. В книге рассказывается об истории и удивительной жизненной силе сорных растений, об ожесточенной борьбе земледельца с сорняками и путях победы над грозным противником. - Книга в увлекательной и популярной форме рассказывает о борьбе с самым древним и злостным врагом хлеборобов — сорняками (первое издание — 1981 г). В ней даны сведения об истории и биологии сорняков, об их взаимоотношениях с культурными растениями.


Пчелы. Что человек и пчела значат друг для друга

Пчелы гораздо древнее, чем люди: когда 4–5 миллионов лет назад предшественники Homo sapiens встретились с медоносными пчелами, те жили на Земле уже около 5 миллионов лет. Пчелы фигурируют в мифах и легендах Древних Египта, Рима и Греции, Индии и Скандинавии, стран Центральной Америки и Европы. От повседневной работы этих трудолюбивых опылителей зависит жизнь животных и людей. Международная организация The Earthwatch Institute официально объявила пчел самыми важными существами на планете, их вымирание будет означать конец человечества.


Лаять не на то дерево

Многие традиционные советы о том, как преуспеть в жизни, логичны, обоснованны… и откровенно ошибочны. В своей книге автор собрал невероятные научные факты, объясняющие, от чего на самом деле зависит успех и, что самое главное, как нам с вами его достичь. Для широкого круга читателей.


Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.


Путешествие еды

Много лет вопросы, поднимаемые в этой книге, являлись табу. Тема пищеварения всегда была за гранью приличия. В этой книге известная писательница Мэри Роуч в честной, иногда шокирующей форме расскажет о том, как устроен наш желудок и система пищеварения. Вы узнаете, как пережевывание пищи влияет на нашу жизнь, от чего на самом деле умер Элвис Пресли, на сколько может растянуться наш желудок, из чего состоит наша слюна и многие другие забавные и серьезные научные факты.


Эволюция разума

Центральная идея работ знаменитого Рэя Курцвейла — искусственный интеллект, который со временем будет властвовать во всех сферах жизни людей. В своей новой книге «Эволюция разума» Курцвейл раскрывает бесконечный потенциал возможностей в сфере обратного проектирования человеческого мозга.


Быть Хокингом

Стивен Хокинг известен читателям как выдающийся физик современности, сделавший множество открытий в теории «черных дыр». А что мы знаем о Хокинге как об обычном человеке, любящем отце и муже, жизнелюбе и мечтателе, на долю которого выпали такие испытания судьбы, которые нельзя пожелать даже врагу? Джейн Хокинг была рядом с ним 26 лет, любила и разделяла с мужем все трудности. Про ее непростой опыт совместной жизни с гением, обо всех трудностях, выпавших на долю их семьи, и моментах счастья расскажет эта книга.