Кислород. Молекула, изменившая мир - [53]

Шрифт
Интервал

Итак, мы обсудили свойства двух из трех промежуточных соединений на пути превращения воды в кислород. Первое промежуточное соединение, гидроксильный радикал, является одним из самых реакционноспосооных химических веществ. Он реагирует со всеми биологическими молекулами за миллионные доли секунды, вызывая цепные реакции, усиливающие повреждение. Второе промежуточное соединение, пероксид водорода, гораздо менее активно, почти инертно, но лишь до тех пор, пока не встретится с железом (в растворе или в молекуле белка). В результате быстрой реакции с железом образуются гидроксильные радикалы, вновь возвращающие нас к первой стадии процесса. А что можно сказать о третьем промежуточном соединении, супероксидном радикале (О>2>-+)? Подобно пероксиду водорода, это не очень активный радикал[35]. Однако он тоже имеет сродство к железу и выводит его из комплексов с белками и из тканевых депо. Чтобы понять, чем это грозит, нужно опять обратиться к реакции Фентона.

Опасность реакции Фентона заключается в том, что она приводит к образованию гидроксильных радикалов, но, когда все доступное железо использовано, она останавливается. Любая другая химическая реакция, приводящая к образованию растворимых форм железа, способствует возобновлению реакции Фентона. Поскольку у супероксидного радикала есть один лишний электрон, мешающий ему превратиться в молекулярный кислород, он с наибольшей вероятностью отдаст этот электрон, чем получит где-то еще три электрона и превратится в воду. Однако очень немногие молекулы способны принимать единственный электрон. Самым подходящим акцептором, которому супероксидный радикал может передать свой электрон, является ион железа. В результате железо опять переходит в ту форму, в которой может участвовать в реакции Фентона:


O>2>-+ + Fe>3+ → O>2 + Fe>2+

Таким образом, три промежуточных соединения на пути между водой и кислородом образуют коварную циклическую систему, которая в присутствии железа повреждает биологические молекулы. Супероксидные радикалы высвобождают запасенное железо, переводя его в растворимую форму. Пероксид водорода взаимодействует с железом, образуя гидроксильные радикалы. Гидроксильные радикалы атакуют любые белки, жиры и ДНК, инициируя деструктивные цепные реакции, нарушающие функцию клеток.


Те же самые промежуточные соединения образуются из кислорода при дыхании. В начале 1950-х гг. на сходство между токсичностью кислорода и облучением обратила внимание Ребека Гершман, тогда работавшая в Университете Рочестера (в рамках Манхэттенского проекта там проводились исследования влияния радиации на биологические системы). На ее семинаре в 1953 г. этими данными заинтересовался молодой аспирант Даниел Гилберт, ранее изучавший физиологию мышечной ткани. Гершман и Гилберт предположили, что свободные радикалы кислорода ответственны за летальные повреждения организма при отравлении кислородом и при облучении. Их данные были опубликованы в знаменитой статье в журнале Science в 1954 г. под недвусмысленным заголовком «Отравление кислородом и ультрафиолетовое излучение — общность механизмов», который я использовал в названии данной главы. Проведенные с тех пор исследования подтверждают, что радиационные повреждения и кислородная интоксикация имеют между собой очень много общего.


Кислород — удивительный элемент. Теоретически кислород легче отбирает электроны у других молекул, чем вода отдает свои электроны. Вода — химически устойчивое вещество. Чтобы забрать у воды электроны, нужно затратить энергию, источником которой может быть ионизирующее или ультрафиолетовое излучение или солнечный свет (при фотосинтезе). Напротив, реакции с участием кислорода сопровождаются выделением энергии. Горение — реакция между кислородом и соединениями углерода, и выделяющееся в ходе этой реакции тепло свидетельствует о том, что реакция может протекать почти спонтанно. В энергетическом плане не важно, быстро ли сжигается топливо, как при горении, или медленно, как при дыхании. Вне зависимости от того, идет ли речь о метаболизме или горении, из 125 г сахара (столько его нужно для приготовления бисквитного пирога) образуется 1790 кДж (428 ккал) энергии — достаточно, чтобы вскипятить 3 л воды или поддерживать горение лампочки мощностью 100 Вт на протяжении 5 часов.

Тот факт, что при такой благоприятной энергетике и обилии кислорода в атмосфере все вокруг не возгорается самопроизвольно, указывает на непонятное нежелание кислорода вступать в химические реакции. Дело заключается в химических связях между атомами в молекуле кислорода. Химия кислорода сложна, но она объясняет не только образование свободных радикалов в человеческом организме, но и невозможность самопроизвольного возгорания. Давайте немного поговорим об этом. В 1891 г. великий шотландский химик сэр Джеймс Дьюар обнаружил у кислорода магнитные свойства. Это открытие было сделано в жестокой борьбе за получение жидкого кислорода. Соревнование выиграл француз Луи Кайете, который добыл несколько капель жидкого кислорода накануне Рождества 1877 г., едва опередив своего швейцарского соперника Рауля Пикте. Годом позже Дьюар демонстрировал изумленной публике получение жидкого кислорода во время одного из пятничных вечеров в Королевском институте. Дьюар был звездой на этих вечерах, которые традиционно проходили в знаменитой аудитории, где многие приглашенные совершенно терялись перед бьющим в зале «фонтаном красноречия». Но Дьюар был не только одаренным исполнителем, но и одним из лучших экспериментаторов того времени. К середине 1880-х гг. он усовершенствовал свой метод и смог получить достаточно жидкого кислорода, чтобы подробно изучить его свойства. Вскоре он обнаружил, что жидкий кислород (на самом деле озон, О


Еще от автора Ник Лэйн
Вопрос жизни

Почему мы стареем и умираем? Зачем нужно половое размножение? И почему полов два, а не больше? У известного английского биохимика есть ответы и на эти вопросы, но главное – он предлагает неожиданный подход к основным проблемам биологии: как из камней, воды и воздуха появилась жизнь.


Энергия, секс, самоубийство

Испокон веков люди обращали взоры к звездам и размышляли, почему мы здесь и одни ли мы во Вселенной. Нам свойственно задумываться о том, почему существуют растения и животные, откуда мы пришли, кто были наши предки и что ждет нас впереди. Пусть ответ на главный вопрос жизни, Вселенной и вообще всего не 42, как утверждал когда-то Дуглас Адамс, но он не менее краток и загадочен — митохондрии.Они показывают нам, как возникла жизнь на нашей планете. Они объясняют, почему бактерии так долго царили на ней и почему эволюция, скорее всего, не поднялась выше уровня бактериальной слизи нигде во Вселенной.


Лестница жизни

Как возникла жизнь? Откуда взялась ДНК? Почему мы умираем? В последние десятилетия ученые смогли пролить свет на эти и другие вопросы происхождения и организации жизни. Известный английский биохимик реконструирует историю всего живого, описывая лучшие изобретения эволюции, и рассказывает, как каждое из них, начиная с самой жизни и генов и заканчивая сознанием и смертью, преображало природу нашей планеты и даже саму планету.


Рекомендуем почитать
Знание-сила, 2003 № 10 (916)

Ежемесячный научно-популярный и научно-художественный журнал.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Здоровая пища — поиски идеала. Есть ли золотая середина в запутанном мире диет?

Наше здоровье зависит от того, что мы едим. Но как не ошибиться в выборе питания, если число предлагаемых «правильных» диет, как утверждают знающие люди, приближается к 30 тысячам? Люди шарахаются от одной диеты к другой, от вегетарианства к мясоедению, от монодиет к раздельному питанию. Каждый диетолог уверяет, что именно его система питания самая действенная: одни исходят из собственного взгляда на потребности нашего организма, другие опираются на религиозные традиции, третьи обращаются к древним источникам, четвертые видят панацею в восточной медицине… Виктор Конышев пытается разобраться во всем этом разнообразии и — не принимая сторону какой-либо диеты — дает читателю множество полезных советов, а попутно рассказывает, какова судьба съеденных нами генов, какую роль сыграло в эволюции голодание, для чего необходимо ощущать вкус пищи, что и как ели наши далекие предки и еще о многом другом…Виктор Конышев — доктор медицинских наук, диетолог, автор ряда книг о питании.Книга изготовлена в соответствии с Федеральным законом от 29 декабря 2010 г.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Путешествие еды

Много лет вопросы, поднимаемые в этой книге, являлись табу. Тема пищеварения всегда была за гранью приличия. В этой книге известная писательница Мэри Роуч в честной, иногда шокирующей форме расскажет о том, как устроен наш желудок и система пищеварения. Вы узнаете, как пережевывание пищи влияет на нашу жизнь, от чего на самом деле умер Элвис Пресли, на сколько может растянуться наш желудок, из чего состоит наша слюна и многие другие забавные и серьезные научные факты.


Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде

Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.


Эволюция разума

Центральная идея работ знаменитого Рэя Курцвейла — искусственный интеллект, который со временем будет властвовать во всех сферах жизни людей. В своей новой книге «Эволюция разума» Курцвейл раскрывает бесконечный потенциал возможностей в сфере обратного проектирования человеческого мозга.


Быть Хокингом

Стивен Хокинг известен читателям как выдающийся физик современности, сделавший множество открытий в теории «черных дыр». А что мы знаем о Хокинге как об обычном человеке, любящем отце и муже, жизнелюбе и мечтателе, на долю которого выпали такие испытания судьбы, которые нельзя пожелать даже врагу? Джейн Хокинг была рядом с ним 26 лет, любила и разделяла с мужем все трудности. Про ее непростой опыт совместной жизни с гением, обо всех трудностях, выпавших на долю их семьи, и моментах счастья расскажет эта книга.