Кентерберийские головоломки - [37]
Задачи на шахматной доске
От сильного порыва ветра каминная труба сорвалась с крыши и рухнула прямо под ноги случайному прохожему. Он сказал спокойно:
– Мне это ни к чему: я не курю.
Некоторые читатели, увидев головоломку на шахматной доске, склонны сделать столь же невинное замечание:
– Мне это ни к чему: я не играю в шахматы.
Такое отношение в значительной мере результат общераспространенного, но ошибочного убеждения, что обычная шахматная головоломка из тех, которые мы привыкли встречать в периодике (и которые по каким-то соображениям называют задачами), связана с самой игрой в шахматы. Однако в шахматной игре отсутствуют правила, которые обязывали бы нас делать мат в два, три или четыре хода, тогда как большинство позиций в этих головоломках таково, что у одного из игроков (если бы это происходило в реальной шахматной партии) преимущество оказалось бы настолько большим, что другой игрок просто признал бы свое поражение, не доиграв партию до конца. Решение этих головоломок вряд ли поможет вам (да и то косвенным образом) при игре в шахматы; известно, что мастера шахматных головоломок – весьма посредственные игроки, и vice versa.[21] Если случайно кто-то оказывается силен и в той и в другой области, то это лишь исключение из правила.
И все же разделенная на клетки доска и ходы шахматных фигур сами по себе весьма примечательным образом приводят к изобретению наиболее занимательных головоломок. Здесь имеется такой простор для всевозможных вариаций, что истинный любитель головоломок не сможет пройти мимо. Именно охраняя интересы тех читателей, которые пугаются одного вида шахматной доски, я публиковал первоначально головоломки этого типа под различными причудливыми одеждами. Одни из этих задач я все еще оставляю в завуалированном виде, другие же я перевел на язык шахматной доски. В большинстве случаев читателю не потребуются вообще никакие познания в области шахмат, но все же для тех, кто не знаком с терминологией, ходами и обозначениями шахматной игры, я ниже дам краткие пояснения.
Сначала мы будем иметь дело с некоторыми вопросами, относящимися к самой шахматной доске, затем – с некоторыми статическими задачами, связанными поочередно с ладьей, слоном, ферзем и конем, затем – с динамическими головоломками, связанными с теми же шахматными фигурами, и, наконец, речь пойдет о смешанных головоломках на шахматной доске. Я надеюсь, что формулы и таблицы, приведенные после статических головоломок, окажутся интересными сами по себе, поскольку публикуются впервые.
Шахматная доска
Шахматная доска представляет собой квадратную плоскую поверхность, разделенную прямыми линиями, пересекающимися под прямым углом, на 64 квадрата. Первоначально они не были раскрашены поочередно в черный и белый (или какие-либо два других) цвета, и это усовершенствование было введено, просто чтобы помочь глазу при игре. Польза такой раскраски несомненна. Например, она облегчает манипуляции со слонами, позволяя с одного взгляда оценить, что наш король или пешки на черных клетках не находятся под угрозой вражеского слона, передвигающегося по белым клеткам. И все же раскраска шахматной доски не существенна для самой игры как таковой. Точно так же, когда мы формулируем головоломки на шахматной доске, часто неплохо помнить, что дополнительный интерес может представлять «обобщение» на случай доски с любым числом клеток или ограничение задачи некой конфигурацией клеток, не обязательно квадратной. Мы приведем несколько головоломок такого типа.
115. Разбиения шахматной доски. Как-то я задался вопросом: сколькими различными способами можно разбить шахматную доску на две части одинаковой формы и размера, если разрезы проводить по границам клеток? Выяснилось, что эта задача одновременно и занимательна и трудна. Я представляю ее в упрощенном виде, взяв доску меньших размеров.
Очевидно, что доску, состоящую из 4 клеток (2×2), можно разделить лишь одним способом (прямой, проходящей через центр), ибо повороты и отражения мы не будем рассматривать как новые решения. В случае доски из 16 клеток (4×4) существует ровно 6 различных способов. Они все приведены здесь, на рисунке, и читателю не удастся найти еще какое-нибудь решение. Теперь возьмите большую доску, 6×6, и попытайтесь определить число способов в этом случае.
116. Львы и короны. Юная леди, которую вы видите на рисунке, при раскройке столкнулась с небольшой трудностью, помочь преодолеть которую предлагается читателю. По неким причинам, о которых она умалчивает, ей нужно разрезать этот квадратный кусок дорогой ткани на 4 части одинаковых размеров и формы, но важно, чтобы в каждой из частей оказалось по льву и по короне.
Поскольку леди настаивает на том, чтобы разрезы пришлись только на границы квадратов, она весьма озадачена. Можете ли вы показать ей нужный способ? Существует только один возможный способ раскройки ткани.
117. Доски с нечетным числом клеток. Рассмотрим доски, которые содержат нечетное число клеток. Начнем с доски 3X3. Ее можно разрезать на равные части, лишь удалив центральную клетку. Вполне очевидно, что это можно сделать только одним способом, как показано в случае
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.
Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.
Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.