Кентерберийские головоломки - [35]

Шрифт
Интервал

настоящую альпинистку, совершающую рискованное восхождение по стене высотой в 20 футов. Изучая след, этот джентльмен установил, что улитка каждый день поднимается на 3 фута, а каждую ночь спит и соскальзывает вниз на 2 фута.

– Прошу, скажи мне, – спросил у него приятель, – сколько времени потребуется леди Улитке, чтобы добраться до верхнего края стены и спуститься вниз по другой стороне? Край стены, как ты знаешь, очень острый, так что, добравшись до него, она сразу же начнет спускаться, причем теперь уже за день она будет опускаться на такое же расстояние, на какое раньше поднималась, а ночью будет спать и соскальзывать вниз, как и раньше.

Быть может, мои читатели вместе с приятелями-философами захотят подсчитать точное число дней. Разумеется, в головоломках такого типа предполагается, что сутки делятся пополам на 12 дневных и 12 ночных часов.


107. Четыре принца. Владения одного восточного монарха представляли собой правильный квадрат. Однажды он обнаружил, что его четыре сына не только чинят козни друг против друга, но тайно бунтуют и против него самого. Выслушав своих советников, король решил, что не стоит заточать принцев в темницу, и распорядился отправить их в четыре угла страны, где каждому выделялась треугольная территория равной площади, границы которой принц не смел пересекать под страхом смерти. Королевский топограф столкнулся, естественно, с огромными трудностями, вызванными дикой природой этого края. В результате оказалось, что хотя каждому принцу и была выделена территория равной площади, но все четыре треугольных района оказались различны по форме; получилось нечто вроде того, что показано на рисунке.



Головоломка состоит в том, чтобы привести длины всех сторон для каждого из четырех треугольников, причем эти длины должны выражаться наименьшими возможными целыми числами. Другими словами, требуется найти (с наименьшими возможными числами) четыре рациональных прямоугольных треугольника равной площади.


108. Платон и девятки. Как в древности, так и в наше время числу 9 приписывались мистические свойства. Мы знаем, например, что было девять муз, девять рек Гадеса и что Вулкан девять дней падал с небес. Далее существует тайное поверье, что человека делали девять портных; известно также, что есть девять планет, что у кошки девять жизней (а иногда и девять хвостов).

Большинство людей сталкивалось с некоторыми странными свойствами числа 9 в обыкновенной арифметике. Например, выпишите какое-нибудь число, содержащее столько цифр, сколько вы пожелаете, сложите эти цифры и вычтите полученную сумму из первого числа. Сумма цифр в этом новом числе всегда будет кратна девяти.

Жил когда-то в Афинах богатый человек, который был искусен в арифметике и имел склонность к мистике. Он был глубоко убежден в магических свойствах числа 9 и постоянно наведывался в рощи Академии, надоедая бедному Платону со своими абсурдными идеями относительно того, что он называл «счастливым числом». Однако Платон придумал способ, как от него избавиться. Когда этот провидец попытался однажды втянуть его в долгую дискуссию на свою излюбленную тему, философ оборвал его замечанием:



– Послушай-ка, приятель, – это наиболее точный перевод фамильярного обращения с древнегреческого, – когда ты принесешь мне решение вот этой небольшой тайны, касающейся трех девяток, я буду рад тебя выслушать и даже готов записать тебя на свой фонограф для будущих поколений.

Затем Платон указал, как вы видите на рисунке, на то, что три девятки можно расположить в виде дроби таким образом, чтобы они изображали число 11. Головоломка же состояла в том, чтобы изобразить с помощью трех девяток число 20.

Хроники упоминают о том, что престарелый любитель чисел бился в поте лица над этой задачей девять лет и однажды в девять часов утра на девятый день девятого месяца упал с девяти ступенек, выбил себе девять зубов и умер через девять минут после этого. Стоит вспомнить, что 9 было его счастливым числом. Таковым же оно, очевидно, было и для Платона.

Для решения этой небольшой задачи требуются лишь самые элементарные арифметические знаки. Хотя ответ, когда вы его узнаете, окажется невероятно прост, чтобы получить его, многим читателям придется немало поломать голову. Возьмите карандаш и прикиньте, как расположить три девятки, чтобы они изобразили число 20.


109. Крестики-нолики. Каждый ребенок знает правила этой игры. Вы рисуете квадрат, разбитый на девять клеточек, и каждый из двух игроков по очереди ставит свой знак (обычно крестик или нолик) в свободную клеточку, добиваясь, чтобы три его знака оказались на одной прямой. Тот из игроков, кому удается это сделать первым, выигрывает с восторженным криком:

Tit, tat, toe,
My last go;
Three jolly butcher boys
All in a row![20]

Это очень древняя игра. Но если два игрока владеют ею в совершенстве, то должно случиться лишь одно из трех событий:

1) первый игрок выигрывает;

2) первый игрок проигрывает;

3) игра оканчивается вничью.

Какое именно из этих трех событий должно произойти?


110. Игра Овидия. Изучив «Крестики-нолики», мы рассмотрим теперь, какое развитие может получить эта игра; явно о ней упоминается в одном из произведений Овидия. Это по существу прародительница игры, о которой говорится в пьесе Шекспира «Сон в летнюю ночь» (действие II, сцена 2). У каждого из игроков имеется по три шашки. Они поочередно ставят их на девять позиций, которые вы видите на рисунке, стремясь расположить все свои шашки на прямой и тем самым выиграть партию. Но и после того, как все шесть шашек выставлены, игра продолжается (шашки переставляются всегда на соседнее незанятое место) с той же целью, что и раньше.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
В поисках бесконечности

За последнее столетие одно из центральных мост в математической науке заняла созданная немецким математиком Г. Кантором теория бесконечных множеств, понятия которой отражают наиболее общие свойства математических объектов. Однако в этой теории был вскрыт ряд парадоксов, вызвавших у многих видных ученых сомнения в справедливости ее основ. В данной книге излагается в популярной форме, какими путями шла человеческая мысль в попытках понять идею бесконечности как в физике, так и в математике, рассказывается об основных понятиях теории множеств, истории развития этой науки, вкладе в нее русских ученых. Книга предназначена для широких кругов читателей, желающих узнать, как менялось представление о бесконечности, чем занимается теория множеств и каково современное состояние этой теории.


Математика на ходу

Как приобщить ребенка к математике и даже сделать так, чтобы он ее полюбил? Замечательные британские популяризаторы науки Роб Истуэй и Майк Эскью нашли веселый и легкий путь к детскому сердцу, превратив страшное пугало – математику – в серию увлекательных игр для детей от 4 до 14 лет. Пусть ваш ребенок исподволь овладевает математической премудростью, играя изо дня в день в угадайку, числовые прятки, двадцаточку и зеленую волну. Вы сможете играть за столом, в очереди к врачу, в магазине, на прогулке, используя подручный счетный материал: машины на стоянке, товары на полках супермаркета, мотоциклистов на дороге… И конечно, ничто не мешает вам переиначивать придуманные авторами математические забавы на свой лад, приспосабливая их ко вкусам и потребностям собственных детей.


Значимые фигуры

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики.


Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.