Кентерберийские головоломки - [25]

Шрифт
Интервал

– Если бы я только нашел нужное поле, – сказал один из них, – сокровища были бы моими, а раз владелец не оставил наследника, я имею на них такое же право, как и всякий другой.

– Как бы тебе это удалось? – спросил его приятель.

– А вот как. В документе, попавшем в мои руки, говорится, что поле квадратное и что сокровища зарыты в нем в месте, отстоящем точно на два фарлонга[16] от одного угла, на три фарлонга от соседнего угла и на четыре фарлонга от угла, соседнего с этим последним. Видишь ли, хуже всего то, что почти все поля в округе квадратные, и я не уверен, найдутся ли среди них два поля одинаковых размеров. Если бы я знал размеры поля, я бы быстро его нашел и, сделав эти простые измерения, добрался бы до сокровищ.

– Но ты не знаешь, ни с какого угла начинать, ни в каком направлении надо переходить к соседнему углу.

– Послушай, приятель, это значит, что придется выкопать от силы восемь ям; раз в бумаге говорится, что сокровища лежат на глубине трех футов, то, бьюсь об заклад, это не заняло бы у меня много времени.



– Надо вам сказать, джентльмены, – продолжал Докинс, – что я немного занимался математикой, а потому, услышав разговор, сразу же понял, что место, которое находится точно в двух, трех и четырех фарлонгах от последовательных углов квадрата, может быть только в квадрате, имеющем вполне определенную площадь. В произвольном квадрате не найдется точки, отстоящей от углов на указанные расстояния. Такая тючка есть только на поле одного размера, и именно об этом не подозревали эти двое. Я предоставляю вам самим определить эту площадь.

Итак, когда я установил размер поля, мне потребовалось уже немного времени, чтобы найти и само поле, ибо человек упомянул в разговоре, о каком районе шла речь. Мне даже не пришлось копать восемь ям; к моему счастью, третья яма оказалась на нужном месте. И только улыбку вызывает мысль об этом бедном парне, который будет бродить вокруг, до конца жизни повторяя: «Если бы я только знал размеры поля», тогда как, по существу, он сам вручил мне сокровища, Я пытался разыскать этого человека, чтобы передать ему анонимно некую компенсацию, но безуспешно. Может быть, он нуждался вовсе в небольшой сумме денег, когда спас меня от краха.

Сможет ли читатель определить искомую площадь поля, пользуясь сведениями, подслушанными в пивной? Это небольшая элегантная головоломка, которая еще раз доказывает, что искусство решать такого рода задачи может пригодиться в самых непредвиденных обстоятельствах.

Головоломки профессора

– Ба, вот и Профессор! – воскликнул Григсби. – Мы попросим его показать нам новые головоломки.

Дело происходило в сочельник, и клуб был почти безлюден. Из всех его членов только Григсби, Хокхерст да я, казалось, собирались задержаться в городе в час общего веселья и пирогов. Однако человек, который только что вошел, был желанным дополнением к нашей маленькой компании. Профессор, как мы его прозвали, был очень популярен в клубе, и когда, как и теперь, атмосфера становилась довольно вялой, его приход оказывался истинным благословением.

Это был веселый человек средних лет с добрым сердцем, но несколько склонный к цинизму. Всю свою жизнь он возился со всевозможными головоломками, загадками и задачами, и если оказывалось, что он чего-то не знал, то все считали, что этого и не стоит знать. Его головоломки всегда были отмечены своеобразным очарованием, и это объяснялось тем, что он умел придать им занимательную форму.

– Вы именно тот человек, который нам сейчас совершенно необходим, – сказал Хокхерст. – Есть ли у вас что-нибудь новенькое?

– У меня всегда есть что-нибудь новенькое, – был наигранно самоуверенный ответ, ибо на самом деле Профессор был человеком скромным. – Я просто переполнен разными идеями.

– Где вы все это добываете? – спросил я.

– Всюду и везде, каждую минуту моего бодрствования. Но мои лучшие головоломки пришли мне в голову во сне.

– Разве все хорошие идеи еще не использованы?

– Конечно, нет. И даже старые головоломки допускают улучшение, украшение и обобщение Возьмите хотя бы магические квадраты. Они были изобретены в Индии до нашей эры и появились в Европе где-то около четырнадцатого века, когда им приписывались некоторые магические свойства, которые, боюсь, они уже утратили. Любой ребенок сумеет расположить числа от 1 до 9 в виде квадрата так, чтобы сумма по любому из восьми направлений равнялась 15; но обратите внимание, что совсем другая задача возникнет, если вы вместо чисел возьмете монеты.


67. Головоломка с монетами. Тут профессор начертил клетки и положил в две из них крону и флорин,[17] как показано на рисунке.



– Теперь, – продолжал он, – поместите наименьшие из имеющих хождение в Англии монет в семь пустых клеточек так, чтобы в каждом из трех столбцов, в каждой из трех строк и на каждой диагонали сумма равнялась пятнадцати шиллингам. Разумеется, в каждой клетке должна находиться по крайней мере одна монета и ни в каких двух клетках нельзя помещать одинаковые суммы.

– Но как монеты влияют на задачу? – спросил Григсби.

– Это вы увидите, когда ее решите.

– Я сначала решу еe с числами, а уж потом подставлю монеты, – сказал Хокхерст.


Еще от автора Генри Эрнест Дьюдени
200 знаменитых головоломок мира

Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.


Пятьсот двадцать головоломок

Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.


Рекомендуем почитать
Квантовый оптоэлектронный генератор

В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Стратегии решения математических задач

Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.


Вначале была аксиома. Гильберт. Основания математики

Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.


Симпсоны и их математические секреты

Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.


Истина и красота: Всемирная история симметрии

На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.