Кентерберийские головоломки - [23]
63. Тайна Корнуэллского утеса. Хотя о случае, известном в клубе как «Тайна Корнуэллского утеса», ни слова не просочилось в прессу, каждый помнил, что он был связан с растратой в банке Тода в Корнхилле, происшедшей несколько лет назад. Внезапно исчезли два клерка этой фирмы, Лэмсон и Марш; оказалось, что вместе с ними исчезла и большая сумма денег. В поиски включилась полиция, которая на этот раз оказалась столь расторопной, что для воров была исключена возможность скрыться за пределами страны. Их путь проследили вплоть до Труро, так что было очевидно, что они скрываются в Корнуэлле.
Случилось так, что именно в это время Генри Мелвил и Фред Уилсон решили совершить пешую прогулку по побережью Корнуэлла. Естественно, их заинтересовало это происшествие. Однажды утром, завтракая в маленькой таверне, они услышали, что воров видели неподалеку, а потому район окружен усиленным кордоном полиции, и бегство преступников весьма маловероятно, И действительно, в таверну вошли инспектор и констебль. Они обменялись любезностями с нашими членами клуба. Ссылка на ведущих лондонских детективов, а особенно конфиденциальное письмо от одного из них, оказавшееся в кармане Мелвила, очень скоро привели к взаимному доверию. Инспектор поделился своими достижениями: только что в четверти мили от таверны он исследовал очень важную улику, которая позволяет предположить, что Лэмсона и Марша не найдут живыми. Мелвил предложил, не медля, всем четверым отправиться туда.
– Тут недалеко у подножия утеса, – сказал инспектор, – констебль нашел записную книжку с именем Марша и несколькими записями, сделанными его рукой. Она, очевидно, выпала случайно. Здесь же он заметил ведущие к вершине следы двух пар ног, которые, как установлено, принадлежат разыскиваемым людям. Согласитесь, напрашивается единственно возможный вывод…
Прибыв на место, они обследовали склон. Следы были ясно видны на мягкой земле, тонким слоем покрывавшей каменистый склон, и все четверо последовали вдоль них к вершине утеса. Здесь утес круто, почти отвесно обрывался к морю – футах в двухстах внизу, у подножия, волны с пеной разбивались о валуны.
– Как видите, джентльмены, – сказал инспектор, – следы ведут прямо к краю утеса, где изрядно натоптано, и обрываются здесь. На многие ярды вокруг нет никаких следов, кроме тех, которые привели нас сюда. Вывод очевиден.
– Зная, что им не скрыться, преступники решили не даваться в руки живыми и бросились с утеса? – спросил Уилсон.
– Вот именно. Ни справа, ни слева вы не увидите ни следов, ни других отметок. Пройдите налево, и вы убедитесь, что самый искусный скалолаз, когда-либо живший на земле, не сможет не только спуститься вниз, но и перебраться даже через край утеса. На расстоянии в пятьдесят футов нет ни выступа, ни выбоины, где могла бы удержаться нога.
– Действительно, спуститься совершенно невозможно, – согласился Мелвил, изучив склон. – Что вы предлагаете?
– Я собираюсь вернуться назад и доложить о случившемся начальству. Мы снимем кордон и будем разыскивать тела на побережье.
– Тем самым вы совершите роковую ошибку, – сказал Мелвил. – Эти люди живы и прячутся неподалеку отсюда. Посмотрите на следы еще раз. Кому принадлежит большой след?
– Лэмсону, а меньший – Маршу. Лэмсон был высоким человеком, чуть больше шести футов, а Марш – низкорослый парень.
– Я тоже так думаю, – согласился Мелвил. – И все же обратите внимание на то, что шаги у Лэмсона короче, чем у Марша. Заметьте также еще одну странность: Марш ступает тяжело на пятки, а Лэмсон больший упор делает на носки. Вы не видите в этом ничего примечательного? Пусть так; но приходило ли вам в голову, что Лэмсон шел сзади Марша? В самом деле, он несколько раз наступает на следы Марша, тогда как Марш ни разу не наступает на следы своего спутника.
– Может быть, вы думаете, что эти люди шли задом наперед, ступая в свои собственные следы? – спросил инспектор.
– Нет, это исключено. Никакие два человека не смогут пройти задом наперед двести ярдов, ступая абсолютно точно на прежние следы. Вы не найдете ни одного места, где они ошиблись бы хоть на одну восьмую дюйма. Я не думаю также, что два человека, за которыми ведется такая погоня, могли бы воспользоваться какими-нибудь летательными аппаратами, воздушным шаром или даже парашютами. Они не прыгали с утеса. И тут Мелвил объяснил, как убежали эти два человека. Оказалось, что он был совершенно прав, ибо преступники были схвачены под соломой в сарае в двух милях от утеса. Как им удалось уйти от этого места?
64. Промчавшийся автомобиль. Небольшое «Дело о промчавшемся автомобиле» служит хорошей иллюстрацией того, как знакомство с некоторыми областями головоломного жанра может оказаться неожиданно полезным. Один из членов клуба, имя которого я позабыл, придя однажды вечером, рассказал, что накануне его друг ехал на велосипеде в Сери, как вдруг выскочивший сзади из-за угла на страшной скорости автомобиль задел одно из колес и вышдб приятеля из седла на дорогу. Тот сильно ушибся, сломал левую руку, а его велосипед был исковеркан. Автомобиль не только не остановился, но и проследить, куда он скрылся, было невозможно.
Сборник, принадлежащий перу одного из основоположников занимательной математики Генри Э. Дьюдени, содержит увлекательные задачи на темы «Кентерберийских рассказов» Д. Чосера, а также всевозможные логические, арифметические, геометрические и алгебраические головоломки.Книга несомненно доставит большое удовольствие всем любителям этого жанра.
Генри Э. Дьюдени по праву считается классиком занимательной математики. Многие его задачи, породив обширную литературу и вызвав многочисленные подражания, вошли в ее золотой фонд.В предлагаемой книге собрано 520 задач и головоломок Дьюдени по арифметике, алгебре, геометрии, разрезанию и составлению фигур. Читателя ждет встреча с постоянно действующими героями Дьюдени — семейством Крэкхэмов, профессором Рэкбрейном и др.Книга доставит удовольствие всем любителям занимательной математики.
В книге развита теория квантового оптоэлектронного генератора (ОЭГ). Предложена модель ОЭГ на базе полуклассических уравнений лазера. При анализе доказано, что главным источником шума в ОЭГ является спонтанный шум лазера, обусловленный квантовой природой. Приводятся схемы и экспериментальные результаты исследования малошумящего ОЭГ, предназначенного для применения в различных областях военно-космической сферы.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.