Катастрофы в морских глубинах - [54]

Шрифт
Интервал

Послевоенное развитие подводного кораблестроения заставило по-новому взглянуть на проблему спасения личного состава затонувших подводных лодок. Увеличение глубины их погружения в два-три раза

(по сравнению с достигнутой в годы второй мировой войны) при одновременном повышении прочности межот-сечных переборок вынудило специалистов искать новые средства и методы выхода подводников на поверхность с таких глубин, поскольку было ясно, что выход в индивидуальных дыхательных аппаратах с глубин более 60 м невозможен даже теоретически из-за опасности развития кессонной болезни.

Проведенные в разных странах исследования показали, что главную опасность для спасающихся представляет не сам подъем через толщу воды, а длительное пребывание под высоким давлением при затоплении отсека и выравнивании давления с забортным. При вдыхании сжатого воздуха в крови человека происходит интенсивное растворение азота, что приводит к азотному наркозу, а несоблюдение режима декомпрессии (постепенного, достаточно медленного снижения давления) при всплытии на поверхность вызывает кессонную болезнь.

Во избежание этого выходящие с большой глубины подводники вынуждены пользоваться тросом с му-сингами (узлами), который предварительно выносится на поверхность специальным буем, выпускаемым с затонувшей лодки. Поднимаясь по этому тросу, подводники должны отсчитывать пройденные узлы и задерживаться на определенных глубинах в течение продолжительного времени. Подобная операция, проводимая в холодной воде, трудна психологически, и существует реальная опасность пренебрежения спасающимися режимом декомпрессии, следствием чего является развитие кессонной болезни и гибель людей. Спасти их в этом случае может лишь скорейшее помещение в так называемую декомпрессионную камеру, где вновь будет создано первоначальное давление и осуществлен по всем правилам режим декомпрессии. Однако далеко не всегда над местом гибели лодки может оказаться спасательное

судно, оборудованное такой камерой.

Учитывая указанное обстоятельство, в США в начале 50-х годов вернулись к идее свободного всплытия с затонувшей подводной лодки, т. е. к методу, которым воспользовались еще Бауэр с товарищами и русские подводники, спасшиеся в 1904 г. с подводной лодки «Дельфин». Суть идеи в новых условиях сводилась к тому, чтобы всемерно ограничить время нахождения спасающихся под высоким давлением перед всплытием. Для этого на лодках стали устанавливать спасательные (шлюзовые) камеры на одного — трех человек, оборудованные системой быстрого затопления.

Процесс выхода на поверхность с использованием такой камеры происходит следующим образом. После того как очередной спасающийся входит в камеру и задраивает за собой люк, она быстро заполняется водой. Находящийся в камере человек делает вдох из специального загубника (очевидно, что давление в дыхательной системе должно подниматься одновременно с давлением в камере), открывает наружный люк и выбрасывается на поверхность. Во время всплытия он должен непрерывно выдыхать расширяющийся в легких воздух. Такой выдох необходим во избежание баротравмы легких. Вместе с тем выдох не должен быть очень интенсивным, поскольку в этом случае воздуха может не хватить и человек захлебнется.

После всплытия на поверхность предохранять подводников от холода и поддерживать их на плаву должны утепленные спасательные гидрокомбинезоны с химическими или электрическими грелками. Такие комбинезоны поступили на вооружение подводных флотов США, Англии, Франции и других стран уже в середине 50-х годов — как видно, печальный урок «Трукьюлента» все же пошел впрок.

Новый толчок развитию средств и методов спасения подводников дала гибель подводной лодки «Трешер».

Хотя личный состав этой лодки после ее гибели не мог остаться в живых ни при каких обстоятельствах (2,5 км водного пространства над лодкой полностью исключали такую возможность), в США после катастрофы был предложен ряд новых способов выхода личного состава из аварийной подводной лодки. Один из них предусматривает замену индивидуального выхода подводников групповым подъемом в специальных надувных камерах, хранящихся на лодке в сложенном биде в меж-дубортном пространстве. Предполагается, что после гибели лодки эти камеры должны заполняться гелиокислородной смесью под давлением, равным забортному. Личный состав лодки, используя индивидуальные дыхательные аппараты, переходит через люк в надувную’камеру, вмещающую 22 человека. Камера посредством троса связана с лодкой. Вытравливая этот трос с помощью лебедки, подводники в камере поднимаются на поверхность, соблюдая заданный режим декомпрессии. Избыток расширяющейся при подъеме газовой смеси свободно стравливается в воду через расположенное в нижней части камеры входное отверстие. Нахождение спасающихся в изолированном от воды объеме, а также возможность их общения между собой являются важными преимуществами предлагаемого спасательного средства.

Следующий шаг в обеспечении спасения личного состава затонувших подводных лодок — применение всплывающих спасательных контейнеров или отделяющихся отсеков. Подобные проекты давно предлагаются конструкторами, однако их практическое применение на подводных лодках сдерживается высокой технической сложностью конструкций, большими объемами и массой,


Рекомендуем почитать
Юрий Гагарин. Первый полёт в документах и воспоминаниях

12 апреля 1961 года — самая светлая дата в истории XX века. В тот день советский летчик Юрий Алексеевич Гагарин обогнул Землю на космическом корабле «Восток», открыв человечеству дорогу к звездам. Биография первого космонавта и его орбитальный рейс хорошо изучены, однако за минувшие десятилетия они обросли множеством мифов. Правдивые воспоминания очевидцев и новейшие рассекреченные документы, собранные в этой книге, позволяют вернуть историческую правду. Они наглядно показывают, сколь значительные трудности пришлось преодолеть Юрию Гагарину на пути к заветной цели.


Электричество в 2000 году

Статья, дающая смелый прогноз развития электротехники, транспорта, энергетики на 70 лет вперед. Напечатана 15 февраля 1927 года в газете "Харьковский пролетарий". Перевод с французского.


Часы и время

Что такое время? Странный вопрос. Ведь это каждый знает. Все только и говорят о нем. «Катастрофически не хватает времени», — жалуются одни. «Как медленно течет время», — говорят другие, когда приходится чего-то или кого-то ждать. То и дело можно слышать вопрос: «Который час?» или (что не очень правильно) «Сколько сейчас времени?»А между тем еще в древности один философ сказал: «Я прекрасно знаю, что такое время, пока не задумываюсь об этом. Но стоит мне задуматься, и я не могу ответить».С тех пор как были сказаны эти слова, прошло много лет, но до сих пор далеко не все тайны времени разгаданы.


Беседы о физике и технике

В книге рассмотрены последние достижения физики и их применения в ряде отраслей современного производства, приборостроения, в электронике, связи, транспорте и медицине. Изложены физические основы мембранной технологии, перспективы использования солитонов и другие вопросы. Книга предназначена для дополнительного чтения по физике в средних специальных учебных заведениях. Может быть полезна учителям физики и учащимся школ и профтехучилищ.


"Наутилусы" наших дней

Очерк преподавателя Военно-морской академии Алексея Травиничева, в котором сравнивается "Наутилус" Жюля Верна с реальными подводными судами начала ХХ века. Помимо оценки эффективности действия подводных лодок в реальных боевых ситуациях и тактико-технических характеристик новейших субмарин, оценивается их возможное применение для научно-исследовательской работы в океане…


Технический регламент о требованиях пожарной безопасности. Федеральный закон № 123-ФЗ от 22 июля 2008 г.

Настоящий Федеральный закон принимается в целях защиты жизни, здоровья, имущества граждан и юридических лиц, государственного и муниципального имущества от пожаров, определяет основные положения технического регулирования в области пожарной безопасности и устанавливает общие требования пожарной безопасности к объектам защиты (продукции), в том числе к зданиям, сооружениям и строениям, промышленным объектам, пожарно-технической продукции и продукции общего назначения. Федеральные законы о технических регламентах, содержащие требования пожарной безопасности к конкретной продукции, не действуют в части, устанавливающей более низкие, чем установленные настоящим Федеральным законом, требования пожарной безопасности.Положения настоящего Федерального закона об обеспечении пожарной безопасности объектов защиты обязательны для исполнения: при проектировании, строительстве, капитальном ремонте, реконструкции, техническом перевооружении, изменении функционального назначения, техническом обслуживании, эксплуатации и утилизации объектов защиты; разработке, принятии, применении и исполнении федеральных законов о технических регламентах, содержащих требования пожарной безопасности, а также нормативных документов по пожарной безопасности; разработке технической документации на объекты защиты.Со дня вступления в силу настоящего Федерального закона до дня вступления в силу соответствующих технических регламентов требования к объектам защиты (продукции), процессам производства, эксплуатации, хранения, транспортирования, реализации и утилизации (вывода из эксплуатации), установленные нормативными правовыми актами Российской Федерации и нормативными документами федеральных органов исполнительной власти, подлежат обязательному исполнению в части, не противоречащей требованиям настоящего Федерального закона.