Как же называется эта книга? - [9]

Шрифт
Интервал

43

Трое людей A, B и C, %один из которых лжец, один — рыцарь, и один — нормальный человек% (на самом деле здесь стояло следущее: «…каждый из которых либо рыцарь, либо нормальный человек, либо лжец» Но в этом случае решение Смаллиана неверно, поэтому я слегка изменил условие — SStas), высказывают следующие утверждения:

A: B по рангу выше, чем C.

B: C по рангу выше, чем A.

Затем у C спрашивают: «Кто старше по рангу — A или B?» Что ответит C?

В. Остров Бахава

На острове Бахава женщины во всем пользуются равными правами с мужчинами, поэтому женщин, как и мужчин, называют рыцарями, лжецами и нормальными людьми. В глубокой древности одна из правительниц острова Бахава по собственной прихоти издала указ, по которому рыцарю разрешалось вступать в брак только с лжецом, а лжецу — только с рыцарем (следовательно, нормальный человек мог вступать в брак только с нормальным человеком). С тех, пор в любой супружеской чете на острове Бахава либо оба супруга — нормальные люди, либо один из супругов — рыцарь, а другой — лжец.

Следующие три истории происходят на острове Бахава.

44

Рассмотрим сначала супружескую чету — мистера и миссис A. Они высказывают следующие утверждения:

Мистер A: Моя жена — не нормальный человек.

Миссис A: Мой муж — не нормальный человек.

Кто такой мистер A и кто такая миссис A — рыцарь, лжец или нормальный человек?

45

Предположим, что мистер и миссис A высказали следующие утверждения:

Мистер A: Моя жена — нормальный человек.

Миссис A: Мой муж — нормальный человек.

Совпадает ли ответ этой задачи с ответом предыдущей задачи?

46

В этой задаче речь пойдет о двух супружеских парах с острова Бахава: мистере и миссис A, мистере и миссис B. При опросе трое из них дали следующие показания.

Мистер A: Мистер B — рыцарь.

Миссис A: Мой муж прав: мистер B — рыцарь.

Миссис B: Что верно, то верно. Мой муж действительно рыцарь.

Кто каждый из этих четырех людей — рыцарь, лжец или нормальный человек и какие из трех высказываний истинны?

Решения

26. Ни рыцарь, ни лжец не могут сказать: «Я лжец» (высказав подобное утверждение, рыцарь солгал бы, а лжец изрек бы истину). Следовательно, A, кем бы он ни был, не мог сказать о себе, что он лжец. Поэтому B, утверждая, будто A назвал себя лжецом, заведомо лгал. Значит, B — лжец. А так как C сказал, что B лгал, когда тот действительно лгал, то C изрек истину. Следовательно, C — рыцарь. Таким образом, B — лжец, а C — рыцарь. (Установить, кем был A, не представляется возможным.)

27. Ответ в этой задаче такой же, как в предыдущей, но ход рассуждений несколько иной.

Прежде всего заметим, что B и C не могут быть оба рыцарями или оба лжецами, так как B противоречит C. Следовательно, B и C не могут быть оба рыцарями или оба лжецами: один из них рыцарь, а другой — лжец. Если бы A был рыцарем, то всего было бы два рыцаря. Следовательно, A не лгал и сказал, что среди троих персонажей рыцарь лишь один. С другой стороны, если бы A был лжецом, то утверждение о том, что из трех островитян A, B и C рыцарь лишь один, было бы истинным. Но тогда A, будучи лжецом, не мог бы высказать это истинное утверждение. Следовательно, на вопрос незнакомца A не мог ответить: «Среди нас один рыцарь». Следовательно, B неверно передал высказывание A, из чего мы заключаем, что B — лжец, а C — рыцарь.

28. Предположим, что A — лжец. Если бы это было так, то утверждение «По крайней мере один из нас лжец» было бы ложным (так как лжецы высказывают ложные утверждения). Следовательно, в этом случае A и B были бы рыцарями. Таким образом, если бы A был лжецом, то он не был бы лжецом, что невозможно. Отсюда мы заключаем, что A не лжец, он рыцарь. Но тогда высказанное A утверждение должно быть истинным. Поэтому по крайней мере один из двух персонажей A и B в действительности лжец. Так как A — рыцарь, то лжецом должен быть B. Итак, A — рыцарь, а B — лжец.

29. Эта задача может служить неплохим введением в логику дизъюнкции. Пусть заданы два высказывания p, q. Высказывание «или p, или q» истинно, если истинно по крайней мере одно из высказываний p, q (или оба). Высказывание «или p, или q» ложно, если ложны оба высказывания p, q. Например, если бы я в хорошую погоду сказал: «Либо дождик, либо снег», то мое высказывание было бы ложным, потому что ложны обе его части: и та, в которой говорится о дожде, и та, в которой говорится о снеге.

Именно так принято понимать связку «или» в логике. Именно так мы будем понимать ее на протяжении всей нашей книги. В повседневной жизни союз «или» иногда интерпретируют так же, как в логике (то есть допускают возможность выполнения обеих альтернатив), а иногда понимают в так называемом «исключительном» смысле (то есть считают, что выполняется одна и только одна из альтернатив, но не обе). В качестве примера «исключительного или» приведу хотя бы такое высказывание: «Я женюсь на Бетти или на Джейн». Предполагается, что альтернативы взаимно исключающие, то есть что я не женюсь на обеих девушках одновременно. С другой стороны, если в учебной программе колледжа сказано, что студенты первого курса должны либо прослушать годовой цикл лекций по математике, либо пройти годичный курс иностранного языка, то вряд ли руководство колледжа станет возражать, если вы захотите прослушать и то и другое! Именно в этом — «включительном» — смысле мы и будем использовать логическую связку «или».


Еще от автора Рэймонд М Смаллиан
Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Поляки в Западной Сибири в конце XIX – первой четверти XX века

Книга посвящена истории польской диаспоры в Западной Сибири в один из переломных периодов истории страны. Автором проанализированы основные подходы к изучению польской диаспоры в Сибири. Работа представляет собой комплексное исследование истории польской диаспоры в Западной Сибири, основанное на материалах большого числа источников. Исследуются история миграций поляков в Сибирь, состав польской диаспоры и вклад поляков в развитие края. Особое внимание уделено вкладу поляков в развитие предпринимательства.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.