Как же называется эта книга? - [11]

Шрифт
Интервал

Первый случай: A — рыцарь. Тогда B и C однотипны. Если C — рыцарь, то и B — рыцарь и, следовательно, однотипен с A. Поэтому C, будучи человеком правдивым, должен был ответить «Да». Если C — лжец, то и B — лжец (поскольку B однотипен с C) и, следовательно, принадлежит к иному типу островитян, чем A. Поэтому C, будучи лжецом, должен солгать и ответить «да».

Второй случай: A — лжец. Тогда B и C не однотипны. Если C — рыцарь, то B — лжец и, следовательно, однотипен с A. Поэтому C, будучи рыцарем, должен ответить «да». Если C — лжец, то B, будучи человеком иного типа, чем C, — рыцарь и принадлежит к иному типу островитян, чем A. Но тогда C, будучи лжецом и утверждая, что A и C не однотипны, должен лгать, поэтому на заданный вопрос он ответит «да». Таким образом, в обоих случаях C ответит «да».

36. Решить эту задачу вам поможет информация, приведенная в условиях задачи после сообщения о том, что островитянин дал ответ на мой вопрос: мое замечание о том, что после его ответа я узнал истинный ответ на свой вопрос.

Предположим, что островитянин, с которым я разговаривал (обозначим его A), ответил на мой вопрос «да». Мог бы я после такого ответа знать, что по крайней мере один из встретившихся мне островитян рыцарь? Разумеется, нет. Действительно, A мог оказаться рыцарем и на мой вопрос правдиво ответить «да» (его ответ соответствовал бы истине, поскольку по крайней мере один островитянин, а именно A — рыцарь). Оба островитянина могли оказаться лжецами. В этом случае A, солгав, ответил бы на мой вопрос «да» (что было бы ложью, так как ни один из островитян не был рыцарем). Таким образом, получив от A ответ «да», я не смог бы узнать истинный ответ на свой вопрос. Но, как говорится в условиях задачи, после ответа A мне стал известен правильный ответ на заданный мною вопрос. Следовательно, A мог ответить только «нет».

Разберемся теперь, кто такие островитянин A и его приятель, которого мы обозначим B. Если бы A был рыцарем, то он не мог бы дать правдивый ответ «нет», поэтому A — лжец. Так как его отрицательный ответ ложен, то по крайней мере один из двух островитян должен быть рыцарем. Следовательно, A — лжец, а B — рыцарь.

37. Должны. Если оба встретившихся вам островитянина рыцари, то они оба ответят «да». Если они оба лжецы, то они также оба ответят «да». Если же один из них рыцарь, а другой лжец, то рыцарь ответит «нет» и лжец также ответит «нет».

38. Должен признаться, что в этой задаче я позволил себе подшутить над читателем. Ключом к решению служит та фраза, в которой говорится, что вам, сколько вы ни бились, так и не удалось «извлечь его из тины». Слова, заключенные в кавычки, представляют собой каламбур — «извлечь его истины». Из них следует, что встретившийся вам островитянин изрекал только ложь, то есть был лжецом. Отсюда мы заключаем, что его звали Эдвин.

39. Прежде всего заметим, что A не может быть рыцарем, потому что рыцарь не назвал бы себя нормальным человеком. Следовательно, A — либо лжец, либо нормальный человек. Тогда истинно высказывание островитянина B. Значит, B — либо рыцарь, либо нормальный человек. Но B не может быть нормальным человеком (так как A — нормальный человек), поэтому B — рыцарь, а C — лжец. Но лжец не может сказать о себе, что он не нормальный человек (так как любой лжец — не нормальный человек), и мы приходим к противоречию. Итак, A не может быть нормальным человеком. Следовательно, A — лжец. Это означает, что высказывание островитянина B ложно, в силу чего B должен быть нормальным человеком (лжецом он быть не может, так как лжец — островитянин A). Итак, A — лжец, а B — нормальный человек. Отсюда мы заключаем, что C — рыцарь.

40. Эта задача обладает интересной особенностью. Условия ее не позволяют установить, кто из двух островитян говорит правду, не будучи рыцарем: A или B. Мы можем доказать более слабое утверждение: по крайней мере один из двух островитян A и B говорит правду, не будучи рыцарем.

Островитянин A либо говорит правду, либо не говорит правду. Докажем два утверждения: 1) если A говорит правду, то он говорит правду, не будучи рыцарем; 2) если A лжет, то B говорит правду, не будучи рыцарем.

1) Предположим, что A говорит правду. Тогда B — рыцарь и, следовательно, говорит правду. Значит, A — не рыцарь. Таким образом, если A говорит правду, то A — лицо, говорящее правду, не будучи рыцарем.

2) Предположим, что A не говорит правду. Тогда B — не рыцарь. Но B должен говорить правду, так как A не может быть рыцарем (ведь A не говорит правду). Следовательно, в этом случае B говорит правду, не будучи рыцарем.

41. Докажем, что если B говорит правду, не будучи рыцарем, и если B не говорит правду, то A лжет, не будучи лжецом.

1) Предположим, что B говорит правду. Тогда A — лжец и, следовательно, заведомо не говорит правду. Отсюда мы заключаем, что B — не рыцарь. Таким образом, в этом случае B говорит правду, не будучи рыцарем.

2) Предположим, что B не говорит правду. Тогда A не лжет. Но A заведомо лжет, когда говорит о B, так как B не может быть рыцарем, если он не говорит правду. Таким образом, в этом случае A лжет, не будучи лжецом.


Еще от автора Рэймонд М Смаллиан
Принцесса или тигр?

Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.


Алиса в Стране Смекалки

Рэймонд Смаллиан счастливо сочетает в одном лице философа, логика, математика, музыканта, фокусника, юмориста, писателя и составителя великолепных задач-головоломок. Искусный писатель и великолепный юморист, Смаллиан любит облекать свои задачи в литературную форму, нередко пародирующую какие-нибудь известные произведения. Делает он это настолько хорошо, что его книги, изобилующие всякого рода парадоксами, курьезами и задачами, с удовольствием читают и те, кто даже не пытается решать задачи.В книге, которую вы держите сейчас в руках, кэрролловская Алиса из Страны Чудес и ее друзья раскрывают перед читателем нескончаемую вереницу задач-головоломок.


Приключения Алисы в Стране Головоломок

Логические головоломки, парадоксы и курьезы, вошедшие в этот сборник, построены на материале знаменитой «Алисы в Стране Чудес» Л. Кэрролла. Известный американский математик и логик P.M. Смаллиан приглашает читателей последовать за Алисой в Страну Головоломок и вместе с ней решить множество увлекательных задач.


Рекомендуем почитать
Интеллигенция в поисках идентичности. Достоевский – Толстой

Монография посвящена проблеме самоидентификации русской интеллигенции, рассмотренной в историко-философском и историко-культурном срезах. Логически текст состоит из двух частей. В первой рассмотрено становление интеллигенции, начиная с XVIII века и по сегодняшний день, дана проблематизация важнейших тем и идей; вторая раскрывает своеобразную интеллектуальную, духовную, жизненную оппозицию Ф. М. Достоевского и Л. Н. Толстого по отношению к истории, статусу и судьбе русской интеллигенции. Оба писателя, будучи людьми диаметрально противоположных мировоззренческих взглядов, оказались “versus” интеллигентских приемов мышления, идеологии, базовых ценностей и моделей поведения.


Князь Евгений Николаевич Трубецкой – философ, богослов, христианин

Монография протоиерея Георгия Митрофанова, известного историка, доктора богословия, кандидата философских наук, заведующего кафедрой церковной истории Санкт-Петербургской духовной академии, написана на основе кандидатской диссертации автора «Творчество Е. Н. Трубецкого как опыт философского обоснования религиозного мировоззрения» (2008) и посвящена творчеству в области религиозной философии выдающегося отечественного мыслителя князя Евгения Николаевича Трубецкого (1863-1920). В монографии показано, что Е.


Технологии против Человека. Как мы будем жить, любить и думать в следующие 50 лет?

Эксперты пророчат, что следующие 50 лет будут определяться взаимоотношениями людей и технологий. Грядущие изобретения, несомненно, изменят нашу жизнь, вопрос состоит в том, до какой степени? Чего мы ждем от новых технологий и что хотим получить с их помощью? Как они изменят сферу медиа, экономику, здравоохранение, образование и нашу повседневную жизнь в целом? Ричард Уотсон призывает задуматься о современном обществе и представить, какой мир мы хотим создать в будущем. Он доступно и интересно исследует возможное влияние технологий на все сферы нашей жизни.


История инженерного дела. Важнейшие технические достижения с древних времен до ХХ столетия

Настоящая книга представляет собой интереснейший обзор развития инженерного искусства в истории западной цивилизации от истоков до двадцатого века. Авторы делают акцент на достижения, которые, по их мнению, являются наиболее важными и оказали наибольшее влияние на развитие человеческой цивилизации, приводя великолепные примеры шедевров творческой инженерной мысли. Это висячие сады Вавилона; строительство египетских пирамид и храмов; хитроумные механизмы Архимеда; сложнейшие конструкции трубопроводов и мостов; тоннелей, проложенных в горах и прорытых под водой; каналов; пароходов; локомотивов – словом, все то, что требует обширных технических знаний, опыта и смелости.


Лес. Как устроена лесная экосистема

Что такое, в сущности, лес, откуда у людей с ним такая тесная связь? Для человека это не просто источник сырья или зеленый фитнес-центр – лес может стать местом духовных исканий, служить исцелению и просвещению. Биолог, эколог и журналист Адриане Лохнер рассматривает лес с культурно-исторической и с научной точек зрения. Вы узнаете, как устроена лесная экосистема, познакомитесь с различными типами леса, характеризующимися по составу видов деревьев и по условиям окружающей среды, а также с видами лесопользования и с некоторыми аспектами охраны лесов. «Когда видишь зеленые вершины холмов, которые волнами катятся до горизонта, вдруг охватывает оптимизм.


Социальное общение и демократия. Ассоциации и гражданское общество в транснациональной перспективе, 1750-1914

Что значат для демократии добровольные общественные объединения? Этот вопрос стал предметом оживленных дискуссий после краха государственного социализма и постепенного отказа от западной модели государства всеобщего благосостояния, – дискуссий, сфокусированных вокруг понятия «гражданское общество». Ответ может дать обращение к прошлому, а именно – к «золотому веку» общественных объединений между Просвещением и Первой мировой войной. Политические теоретики от Алексиса де Токвиля до Макса Вебера, равно как и не столь известные практики от Бостона до Санкт-Петербурга, полагали, что общество без добровольных объединений неминуемо скатится к деспотизму.


Флатландия. Сферландия

Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.


Математические головоломки и развлечения

Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.