Как работает Вселенная: Введение в современную космологию - [9]
Все пространства-времена, с которыми мы имеем дело в этой книге, описываются их метриками, и все эти метрики были названы в честь их открывателей. Они включают в себя: метрику Минковского (плоское пространство), метрику Фридмана – Леметра – Робертсона – Уокера (расширяющаяся однородная и изотропная Вселенная, заполненная пылевидной материей, раздел 2.4), метрику де Ситтера (очень быстро расширяющаяся Вселенная без материи, но с космологической постоянной, раздел A.1) и метрики Шварцшильда, Райсснера – Нордстрёма, Керра и Керра – Ньюмена (различные виды черных дыр, раздел 6.1). Однако их формальное описание существенно выходит за рамки этой книги.
Световой конус в искривленном пространстве-времени может быть гораздо более сложным, чем в плоском пространстве-времени. Например, гравитационное линзирование обеспечивает существование нескольких изображений одного и того же объекта. Это означает, что фотоны, испускаемые этим объектом, движутся к нам по различным траекториям (им также требуется различное время для каждого пути). А для экзотических объектов вроде черных дыр ситуация становится еще запутаннее. Вот почему в сложных случаях часто используют световые конусы, чтобы проиллюстрировать геометрические свойства пространства-времени.
Искривление пространства-времени понять легче, если отбросить одно пространственное измерение. Тогда пространство-время можно представить в виде эластичной пленки, на которой лежат различные предметы, прогибая и деформируя ее. Пленка искривляется, и прогиб, вызванный одними тяжелыми предметами, влияет на движение других предметов, положенных на пленку. Изменение высоты этой пленки соответствует изменению гравитационного потенциала, наклон поверхности демонстрирует ускорение свободного падения, и его локальная кривизна связана с приливными силами. Эта очень наглядная аналогия была придумана Эйнштейном. В интернете есть довольно много видеоматериалов, демонстрирующих ее.
В заключение раздела заметим, что ОТО не только дает некоторые количественные поправки к ньютоновской физике, но и предсказывает совершенно новые эффекты и объекты, такие как гравитационные волны или черные дыры.
1.3. Сколько весит свет?
ОТО лежит в основе математического формализма в космологии. Тем не менее при рассмотрении космологических проблем следует учитывать свойства среды, заполняющей Вселенную. Наши представления о содержимом Вселенной существенно изменились со времени жизни Эйнштейна. Сто лет назад физики знали только о существовании обычной материи, из которой состоят звезды, планеты и другие привычные объекты вроде наших тел, и об электромагнитном излучении. Сегодня обычная материя называется барионной материей, и, как полагают, на нее приходится около 5 % содержимого Вселенной. На электромагнитное излучение приходится гораздо меньше 1 %.
Остальные 95 % состоят из двух или трех других видов материи. Темная материя и темная энергия, которые мы обсудим соответственно в главе 4 и главе 5, являются действительно новыми типами, хотя темную энергию можно назвать материей только весьма условно. Третьим типом материи является нейтрино[23]. Эти типы материи отличаются друг от друга своими уравнениями состояния, т. е. соотношением между плотностью массы ρ и давлением р. Плотность массы связана с плотностью энергии ε простым соотношением ε = ρc2, которое получается путем применения хорошо известного соотношения E = mc2 к единице объема. Хотя уравнение состояния может иметь любую форму, мы рассмотрим только его простейший вид р = wε = wρc2, где w – безразмерная константа.
Следует отметить, что плотность энергии включает энергию покоя, которая очень велика из-за коэффициента с2. Насколько велика? Переформулируем этот вопрос: если бы мы рассматривали обычный воздух, то какое давление он бы имел при значении w = 1? При стандартных условиях воздух имеет плотность 1,23 кг/м3. Умноженная на квадрат скорости света, она дает плотность энергии около 1017 Дж/м3, что соответствует давлению 1017 Па. Таким образом, мы должны были бы сжать воздух до 1012 атмосфер[24], чтобы сделать его уравнение состояния похожим на уравнение с параметром w = 1. Такое давление в пределах Солнечной системы встречается только в центре Солнца, но плотность вещества там также значительно выше, около 1,6×105 кг/м3. Таким образом, можно смело положить w = 0 для обычной барионной материи. Такой вид материи в космологии называется холодной или пылевидной материей.
С точки зрения ОТО уравнение состояния материи среди прочего определяет и то, как она участвует в гравитационном взаимодействии. В этом ОТО отличается от классической гравитации Ньютона, в которой давление не влияет на силу гравитационного взаимодействия. Определим теперь, как различные типы материи взаимодействуют гравитационно.
1.3.1. Барионная материя
Для барионной материи это было сделано в конце XVIII в. Генри Кавендишем. Результаты его эксперимента были опубликованы в 1798 г. в «Философских трудах Королевского общества» в Лондоне, ведущем научном журнале того времени, и считаются важной вехой в истории физики. Цель эксперимента состояла в том, чтобы определить среднюю плотность Земли, что непосредственно переводится в задачу оценки гравитационной постоянной. Кавендиш измерял силу гравитационного взаимодействия между двумя парами свинцовых шаров, при этом изменялись как массы шаров, так и расстояния между ними. Его экспериментальная установка использовала новое хитроумное изобретение того времени – крутильные весы. Та же идея была использована несколько лет спустя Шарлем Огюстеном де Кулоном для измерения силы электростатического взаимодействия. Однако Кавендиш решал гораздо более сложную задачу в связи с существенно более слабой силой гравитационного взаимодействия. Ему удалось измерить силы на уровне 10-7 Н, что для того времени было беспримерным достижением. Оценка гравитационной постоянной, полученная Кавендишем, отличается от современной лишь на 1 %, а точность измерения была улучшена лишь столетие спустя. Он также подтвердил экспериментально закон всемирного тяготения Ньютона.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.