Как работает Вселенная: Введение в современную космологию - [7]
Для объяснения лунных приливов на Земле в рамках ньютоновского подхода мы рассмотрим сначала гравитационное поле неподвижной Луны. Рассматривая ее как точечную массу, мы видим, что силовые линии ее гравитационного поля, т. е. направления ускорения свободного падения на Луну, радиальные. Таким образом, суммарная сила, действующая на любую частицу на Земле, является суммой притяжения к остальной части Земли и силы, действующей в направлении Луны (мы не рассматриваем другие небесные тела, чтобы избежать путаницы). Для перехода к системе отсчета, связанной с Землей, мы должны вычесть ускорение свободного падения в центре масс Земли из ускорения свободного падения, действующего на каждую точку, как показано на рис. 1.4. В результате мы получаем знакомую картину: приливы в направлении к и от Луны и отливы в перпендикулярных направлениях.
Таким образом, с ньютоновской точки зрения приливная сила – это просто разница ускорений свободного падения между произвольной точкой и некоторой опорной точкой, например центром Земли. С релятивистской точки зрения приливная сила – это то, что отличает гравитацию от сил инерции, вызванных, например, ускорением ракеты.
Переходя в систему свободно падающего наблюдателя, вы можете обнулить силу, действующую в одной точке, как правило, в центре масс, но в любой другой точке имеется ненулевая разность – приливная сила. В ОТО приливные силы являются проявлением кривизны пространства-времени.
Вопрос: Почему приливы, вызванные небольшой Луной, сильнее, чем приливы, вызванные огромным Солнцем?
Ответ: Формулу для приливной силы можно найти в учебниках, она утверждает, что эта сила обратно пропорциональна кубу расстояния. Тем не менее, вместо того чтобы просто использовать эту формулу, покажем, как эта зависимость от расстояния может быть получена с помощью простой аналогии.
Рассмотрим два точечных тела единичной массы – одно в центре Земли, а другое на поверхности Земли. Приливная сила во второй точке может зависеть только от трех параметров: от расстояния между двумя точками, в которых находятся тела, от расстояния до Луны, а также от угла между направлением на Луну и линией, соединяющей эти точки. Эта приливная сила, равная разности сил, действующих на две точечные массы, равна также сумме сил, действующих на второе тело и на первое тело, если вторая взята с противоположным знаком.
Воспользуемся электростатической аналогией и заменим эти тела точечными единичными зарядами, а Луну – внешним точечным зарядом, величина которого выбирается таким образом, что силы, действующие на точечные заряды, идентичны гравитационным силам, действующим на точечные массы[20]. Обратим знак центрального заряда (именно поэтому нам понадобилось переключиться на электрическое поле, так как не существует такого понятия, как отрицательная масса). Теперь на заряд в центре Земли действует сила той же величины, но в противоположном направлении. Эти два противоположных заряда образуют диполь, причем его размеры существенно меньше расстояния до Луны.
Сила, с которой точечный заряд, которым мы заменили Луну, взаимодействует с нашим электрическим диполем, равна искомой приливной силе. Согласно третьему закону Ньютона, она равна также силе, с которой диполь действует на точечный заряд в центре Луны. Поле диполя убывает обратно пропорционально кубу расстояния, поэтому поле приливных сил должно убывать по тому же закону. Возвращаясь к гравитации, мы наконец-то получаем, что приливные силы падают обратно пропорционально кубу расстояния до тела, вызывающего приливы, и пропорциональны его массе.
Теперь сделаем некоторые простые расчеты. Солнце весит 2,0×1030 кг и расположено на расстоянии 1,5×108 км. Луна весит 7,3×1022 кг и находится на расстоянии 3,8×105 км. Таким образом, Солнце в 2,7×107 раз тяжелее и в 395 раз дальше, чем Луна. Если возвести отношение расстояний в куб, мы получаем 6,2×107, что в 2,2 раза больше, чем отношение масс. Таким образом, лунные приливы в 2,2 раза сильнее солнечных приливов.
Однако, если нас интересует отношение гравитационных сил, мы должны использовать отношение квадратов расстояний, которое в 176 раз меньше, чем отношение масс, и Солнце легко выигрывает это соревнование. Если мы интересуемся вкладом в гравитационный потенциал, обратно пропорциональный расстоянию, то вклад от галактик в скоплении Девы, расположенных на расстоянии около 54 млн световых лет (св. лет) от Земли, будет существенно большим, чем вклад как Солнца, так и Луны.
1.2.8. Пространство, время и пространство-время
Что такое пространство-время? Начнем с пространства. Наше пространство трехмерно. Это означает, что мы можем двигаться вперед или назад, вправо-влево, вверх или вниз, т. е. изменить наше местоположение, описываемое тремя пространственными координатами. Каждый физический процесс происходит в этих трех координатах и во времени. В ОТО время считается четвертой координатой в дополнение к трем пространственным. Вместе они образуют четырехмерное пространство-время.
Тем не менее время имеет одно важное отличие по сравнению с пространством: мы можем сознательно выбрать, как двигаться в пространстве, но мы не можем повлиять на наше движение во времени. Мы обречены двигаться во времени из прошлого в будущее со скоростью вне нашего контроля, если только не будем двигаться со скоростью, близкой к скорости света. Если мы будем двигаться очень быстро, мы можем немного усложнить ситуацию за счет релятивистского замедления времени, но нам все равно придется двигаться вдоль оси времени по направлению к будущему. По этой причине, даже когда мы объединяем пространственные и временны́е измерения в единое пространство-время, мы не воспринимаем их как равные и по-прежнему относимся ко времени особым образом.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Книга «Большой космический клуб» рассчитана на широкий круг читателей и рассказывает об образовании, становлении и развитии неформальной группы стран и организаций, которые смогли запустить национальные спутники на собственных ракетах-носителях с национальных космодромов.
Автор книги Анатолий Викторович Брыков — участник Великой Отечественной войны, лауреат Ленинской премии, заслуженный деятель науки и техники РСФСР, почетный академик и действительный член Академии космонавтики им. К. Э. Циолковского, доктор технических наук, профессор, ведущий научный сотрудник 4 Центрального научно-исследовательского института Министерства обороны Российской Федерации.С 1949 года, после окончания Московского механического института, работал в одном из ракетных научно-исследовательских институтов Академии артиллерийских наук в так называемой группе Тихонравова.