Избранные труды - [86]
Уже в древнегреческий период была зафиксирована масса подобных ситуаций (они назывались «апориями») в самых различных науках — в математике, физике, философии.
Например, записывался натуральный ряд чисел, в нем выделялись числа — «полные квадраты»; они сопоставлялись со всем рядом:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16… 1 4 9 16…
Совершенно очевидно, что при таком способе сопоставления чем дальше мы будем двигаться по ряду, тем меньшим будет «вес» полных квадратов по сравнению со всеми другими числами. Из этого делали вывод, что число полных квадратов в ряду натуральных чисел меньше, чем число всех чисел. Но затем предлагался другой способ сопоставления: каждому числу натурального ряда ставился в соответствие его квадрат
1 2 3 4 5 6 7 8 1 4 9 16 25 36 49 64
Было очевидно, что сколько бы мы ни двигались так по ряду, мы всегда сможем это сделать. Из этого делали вывод, что число полных квадратов в бесконечном ряду чисел не меньше числа всех чисел.
Таким образом, применяя два различных способа рассуждения — и заметим: правильных с точки зрения существовавших тогда понятий, — мы приходим к двум различным, взаимно исключающим друг друга утверждениям.
Могут попробовать возразить, что эти утверждения не были правильными, так как к бесконечным множествам, с точки зрения современной математики, не могут применяться понятия «больше», «меньше», «равно», а должны применяться понятия «мощности» и связанные с ними процедуры сопоставления.[75] Это правильно. Но мы знаем это сегодня, а когда этот вопрос встал и когда его обсуждали, начиная, по-видимому, с Демокрита и вплоть до работ Г. Кантора, понятия мощности множества не существовало и приходилось пользоваться теми понятиями, которые были. Кроме того, даже и с этой модернизированной точки зрения нужно признать, что оба утверждения по поводу числа полных квадратов в ряду натуральных чисел находятся в совершенно равных условиях — оба являются одинаково ложными или одинаково истинными. Только это важно в контексте данного рассуждения: возникала ситуация, в которой два знания исключали друг друга и оба были одинаково правильными, и из этой ситуации нужно было выходить, создавая новые средства науки.
Чтобы снять возможное впечатление, будто парадоксальная ситуация возникает из-за оперирования «трудным» и немного мистическим понятием бесконечности, разберем еще пример физического парадокса, выявленного Г. Галилеем примерно через две тысячи лет после появления разобранного выше математического парадокса.
Различие между равномерными и переменными движениями стало известно людям уже давно. Но это было лишь наглядное, чувственное знание, не осмысленное в понятиях. Существовавший во времена Аристотеля чувственно-непосредственный способ сопоставления движений, когда время фиксировалось как равное, а сравнивались одни лишь отрезки пройденного телами пути, не позволял выявить различие между равномерными и переменными движениями в виде понятия.
И хотя в представлении древних понятие скорости было результатом и средством сопоставления движений вообще, независимо от их характера, по содержанию и по своему строению оно служило адекватным отражением только равномерных движений. Поэтому когда Галилей приступил к исследованию ускоренных движений, используя для этого понятие скорости, выраженное в формуле v = s/t, то это привело его к логическому противоречию (антиномии). Так как часы, находившиеся в его распоряжении, несмотря на все произведенные усовершенствования, были все еще малопригодны для измерения небольших промежутков времени, Галилей решил замедлить исследуемые движения падения с помощью наклонных плоскостей, а это в свою очередь заставило его сопоставить между собой падение тел по вертикали и по наклонным. Согласно определениям Аристотеля, из двух движущихся тел то имеет большую скорость, которое проходит за одно и то же время большее пространство, чем другое, или то же пространство, но за меньшее время. Соответственно считалось, что два движущихся тела обладают одинаковой скоростью, если они проходят равные пространства в равные промежутки времени.
Галилея эти определения уже не удовлетворяли. Выработанный им способ измерения времени позволил представить понятие скорости в виде математического отношения величин пути и времени. С этой новой точки зрения ничего не изменится, если назвать скорости равными и тогда, «когда пройденные пространства находятся в таком же отношении, как и времена, в течение которых они пройдены…» [Галилей, 1948, с. 34]. Поскольку Галилей уже «подвел» понятие скорости под более широкое понятие математического отношения, сделанный им переход был вполне законен. Равенство отношений s
Путеводитель-хрестоматия содержит фрагменты из работ советского российского методолога Г.П. Щедровицкого (1929-1994), представляющих основные средства и инструменты управленческого мышления. Предназначен для использования в качестве учебного пособия в циклах тренировок и практических занятий в рамках элементарной, начальной, общей и высшей управленческой подготовки.
В книге представлено исследование формирования идеи понятия у Гегеля, его способа мышления, а также идеи "несчастного сознания". Философия Гегеля не может быть сведена к нескольким логическим формулам. Или, скорее, эти формулы скрывают нечто такое, что с самого начала не является чисто логическим. Диалектика, прежде чем быть методом, представляет собой опыт, на основе которого Гегель переходит от одной идеи к другой. Негативность — это само движение разума, посредством которого он всегда выходит за пределы того, чем является.
В Тибетской книге мертвых описана типичная посмертная участь неподготовленного человека, каких среди нас – большинство. Ее цель – помочь нам, объяснить, каким именно образом наши поступки и психические состояния влияют на наше посмертье. Но ценность Тибетской книги мертвых заключается не только в подготовке к смерти. Нет никакой необходимости умирать, чтобы воспользоваться ее советами. Они настолько психологичны и применимы в нашей теперешней жизни, что ими можно и нужно руководствоваться прямо сейчас, не дожидаясь последнего часа.
На основе анализа уникальных средневековых источников известный российский востоковед Александр Игнатенко прослеживает влияние категории Зеркало на становление исламской спекулятивной мысли – философии, теологии, теоретического мистицизма, этики. Эта категория, начавшая формироваться в Коране и хадисах (исламском Предании) и находившаяся в постоянной динамике, стала системообразующей для ислама – определявшей не только то или иное решение конкретных философских и теологических проблем, но и общее направление и конечные результаты эволюции спекулятивной мысли в культуре, в которой действовало табу на изображение живых одухотворенных существ.
Книга посвящена жизни и творчеству М. В. Ломоносова (1711—1765), выдающегося русского ученого, естествоиспытателя, основоположника физической химии, философа, историка, поэта. Основное внимание автор уделяет философским взглядам ученого, его материалистической «корпускулярной философии».Для широкого круга читателей.
В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.
В монографии раскрыты научные и философские основания ноосферного прорыва России в свое будущее в XXI веке. Позитивная футурология предполагает концепцию ноосферной стратегии развития России, которая позволит ей избежать экологической гибели и позиционировать ноосферную модель избавления человечества от исчезновения в XXI веке. Книга адресована широкому кругу интеллектуальных читателей, небезразличных к судьбам России, человеческого разума и человечества. Основная идейная линия произведения восходит к учению В.И.