История лазера - [62]
Объемный резонатор состоит из полости проводящего материала, в которой образуются стоячие электромагнитные волны. Чтобы эта полость стала резонатором, нужно, чтобы ее размеры соответствовали длине волны. Для полостей простой формы, например куб, это соотношение гласит (как мы уже видели), что сторона полости должна быть кратной целому числу полуволн. Уменьшение длины волны сказывалось на микроволновой технике. Было установлено, что для передачи микроволн с одного места в цепи до другого нужно направлять их в подходящие металлические структуры. Волноводы, как их стали называть, представляют металлические трубы круглого или прямоугольного сечения, и волна распространяется в них за счет отражений от стенок. Эти волноводы могут быть и антеннами, если они имеют открытый конец.
Радар
Микроволновые устройства и технологии получили мощный импульс развития между 1930 и 1945 гг. из-за необходимости получения ультракоротких волн, нужных для разработок и создания радаров (аббревиатура, введенная американцами: radio detection and ranging).
Принцип работы радара очень прост: импульс радиоволн посылается на цель, частично отражается обратно к приемнику, где и регистрируется. Посылаемый и отраженный импульсы визуализируются на осциллоскопе, и, измеряя временной интервал между моментами, когда импульс был послан и когда пришел обратно, можно определить расстояние до цели.
Еще Герц и другие наблюдали, что радиоволны могут отражаться металлическими предметами. В 1904 г. немецкий инженер Хулсмейер получил патент на использование этого свойства для обнаружения препятствий при плавании кораблей. Он построил устройство, с которым получил хорошие результаты в Роттердамском порту. Но никто не заинтересовался разработкой этой системы, которая была слишком передовой для того времени.
Результаты первых экспериментов по ионосферному радиозондированию атмосферы, которые провел Эплтон (1925 г.) с целью доказать существование ионизованных слоев в атмосфере, способных отражать микроволны, оживил идею использовать методы, основанные на отражении радиоволн, для локализации объектов, расположенных на больших расстояниях. Принцип использования импульсов излучения, что является характерной особенностью современного радара, впервые был реализован в 1925 г. Д. Брейтом (1899—1981) и М.А. Тьювом (1901-1982) из Вашингтонского Института Карнеги для измерения высоты ионосферы. Итак, ряд экспериментов по применению принципа локализации земных объектов и определения расстояний до них начался в Европе и США. При проведении исследований, связанных с использованием микроволн для связи, было найдено, что можно обнаружить присутствие судов и самолетов путем регистрации энергии, которую они отражают.
В США, в Исследовательской лаборатории Военно-морского флота (NRL), уже с 1920-х гг. была известна возможность обнаружения движущихся объектов путем отражения электромагнитных волн. В. Делмар Гершбергер и его сотрудники использовали для этой цели магнетроны, изготовленные фирмами «Вестингауз» и RCA, для проведения экспериментов на сантиметровых волнах. Были получены успешные результаты. Однако в то время было мало квалифицированных специалистов, чтобы довести устройства до практического использования.
Разработки радаров в Великобритании
В Великобритании, в 1934 г., желание защитить страну от воздушного нападения привело Г. Э. Вимперса, директора исследований при Министерстве авиации к обращению за советом к А. В. Хиллу (1886—1977), видному физиологу из Кембриджа, который получил в 1922 г. Нобелевскую премию по физиологии, и который был офицером артиллерии в Первой мировой войне. Конкретно, задавался вопрос о возможности уничтожения вражеских самолетов. Результатом обсуждений было обращение Вимперса 12 ноября 1934 г. к Государственному секретарю по военно-воздушным силам с просьбой организовать комитет для рассмотрения того, насколько последние успехи в науке и технике могут быть использованы для усиления противовоздушной обороны» Вимперс предложил, чтобы председателем этого комитета был профессор Г. Т. Тизард (1885—1959), декан химического факультета Империал Колледжа. А членами предлагалось назначить Хилла и профессора П. М. С, Блэккета (1897—1974), который характеризовался «как морской офицер в войне (1914-18), который с тех пор проявил себя своей работой в Кембридже, как один из лучших молодых научных лидеров». Эта характеристика была вполне оправдана, так как в 1948 г. Блэккет получил Нобелевскую премию по физике «за развитие метода камеры Вильсона и открытие с ее помощью в области ядерной физики и космических лучей». Комитет был немедленно создан и 28 января 1935 г. состоялось первое заседание. Вимперс обратился с запросом к Суперинтенданту радиоисследовательского отдела Национальной Физической лаборатории Роберту Ватсон-Ватту (1892—1973), нельзя ли выводить из строя вражеские самолеты или их экипажи с помощью интенсивных пучков радиоволн. Ватсон-Ватт немедленно ответил, что произвести такие «лучи смерти» нереально, но вместо этого возможно обнаруживать вражеские самолеты. Он представил расчеты, показывающие, что энергию, отражаемую самолетом, облучаемого мощным пучком радиоволн, можно использовать для этой цели. Немедленно была проведена работа по демонстрации, которая дала прекрасные результаты 26 февраля 1935 г. Она была настолько успешной, что было начато сооружение системы радиолокационных станций. Было продемонстрировано обнаружение корабля на расстояние около 30 км и возможность обнаружения самолета на расстояние 160 км. Роберт Ватсон-Ватт написал фундаментальное уравнение радара, которое показывает, что максимальное расстояние, на котором можно обнаружить самолет, пропорционально линейным размерам антенны и только лишь корню четвертой степени из мощности. Это означает, что для увеличения дальнодействия радара в 2 раза нужно увеличивать мощность в 16 раз.
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.
Давайте совершим путешествие вместе с наукой в далёкое прошлое, чтобы прийти к тому времени, когда зарождалась жизнь на Земле, и узнать, как это совершалось. От такого путешествия станет крепче уверенность в силе науки, в силе человеческого разума, в нашей собственной силе.