История лазера - [132]
Спектроскопия
Если мы теперь обратимся к более фундаментальным применениям, нам следует упомянуть спектроскопию. Когда были изобретены лазеры на красителях и стало очевидным, что их длины волн можно широко изменять в некотором заданном диапазоне, сразу же было осознано, что они являются идеальными источниками для спектроскопии. Эти лазеры обеспечили новые уровни чувствительности и разрешения. Взрыв использования лазеров в спектроскопии произошел в 1970-х гг. Например, лазер может испарить мельчайшее количество вещества исследуемого образца, обеспечивая исключительно прецизионный микроанализ. Ряд очень квалифицированных исследователей использовали лазеры для спектроскопии; среди них Шавлов, который в 1981 г. получил Нобелевскую премию по физике за разработку лазерной спектроскопии.
Спустя некоторое время было показано, что можно обнаруживать, контролировать и манипулировать отдельными атомами. В одном из экспериментов одиночный атом цезия был зарегистрирован и идентифицирован из сосуда, содержащего 10>18 других атомов. Атомы с помощью лазеров можно охладить до температур, которые выше абсолютного нуля лишь на одну миллионную градуса. С помощью ультракоротких импульсов лазерного излучения можно изучить детали событий, происходящие при химических реакциях молекул, с точность до времени, с которым электрон обращается вокруг атомного ядра. В 1997 г. Нобелевскую премию по физике получили К. Коен-Таннуджи, С. Чу и В.Д. Филипс за их вклад в разработку методов охлаждения и захвата атомов в ловушки с использованием лазеров, отмечая их мастерство в использовании спектроскопических методов для достижения их результатов.
Геофизика
Геофизики используют спутники, способные отражать свет в обратном направлении (с уголковыми отражателями) для измерения движений земной коры. Путем измерения времени, которое требуется лазерному импульсу, чтобы дойти до спутника и вернуться обратно, можно измерить с очень высокой точностью расстояние между лазером и спутником. Если спутник находится на стационарной орбите, так что его расстояние до Земли не изменяется, то этот метод позволяет измерить малые перемещения места, на котором установлен лазер. Это позволяет измерять дрейф континентов.
Континенты плавают по расплавленному внутреннему слою Земли, как плиты земной коры. Эти плиты сталкиваются друг с другом, вызывая землетрясения, появление островов и извержения вулканов. Поэтому измерения дрейфа континента имеют огромную важность. Спутниковая программа LAGEOS (лазерный геодинамический спутник) дала в 1970-е гг. доказательства дрейфа континентов. В настоящее время эти измерения продолжаются со вторым спутником такого типа. Например, были выполнены измерения вдоль линии разлома в Калифорнии. С помощью измерения таких малых перемещений делаются попытки предсказать землетрясение, прежде чем оно случится.
С помощью такой же методики можно прослеживать, как Земля вращается вокруг оси и изменяет свою форму.
Лазер и Луна
Bell Labs использовала один из первых лазеров для исследований рельефа поверхности Луны. Во время экспедиции Аполлон 11, отправленной на Луну 21 июля 1969 г., астронавты установили на ее поверхности два уголковых отражателя, способных отражать лазерный свет, посланный с Земли[16]. Группа астрономов Ликской Обсерватории в Калифорнии послала на Луну мощный пучок рубинового лазера, что позволило измерить расстояние Земля—Луна с точностью, намного превышающей точность обычных астрономических наблюдений.
Лазерный альтиметр был использован в проекте MOLA (Mars Orbiter Laser Altimeter), чтобы получить трехмерное глобальное изображение Марса.
Гравитационные волны
В 1919 г. Эйнштейн предсказал, что движущиеся массы производят гравитационные волны, распространяющиеся со скоростью света. К сожалению, амплитуда такого гравитационного излучения, испускаемого любым источником, созданным в лаборатории, слишком мала, и гравитационные волны нельзя обнаружить. С другой стороны, астрофизические явления, которые могут вовлекать огромные массы с релятивистскими скоростями, могут произвести гравитационное излучение, которое поддается измерению. Косвенные доказательства наличия существования гравитационных волн были найдены, и за это Алан Рассел Хале (г. р. 1950) и Жозеф Хутон Тейлор (г. р. 1941) получили в 1993 г. Нобелевскую премию по физике. Однако прямые, определенные доказательства все еще отсутствуют. Гравитационные волны возникают от ускоренных масс способом, во многом подобным испусканию электромагнитных волн ускоренными зарядами. Они воздействуют на массы, растягивая их в одном направлении и сжимая в другом, перпендикулярном, направлении.
Когда гравитационная волна проходит, она может привести массу в колебательное движение, вверх-вниз, подобно океанским волнам. Чтобы обнаружить гравитационные волны, необходимо измерить такое движение.
В принципе смещения, производимые гравитационной волной, можно было бы измерить с помощью большого цилиндра, изолированного от внешних воздействий. Он резонировал бы механически на частоту гравитационной волны. Чувствительные датчики преобразуют эти колебания в сигналы, которые можно измерить. Первый детектор на основе резонансного цилиндра был сконструирован в конце 1950-х гг. Джозефом Вебером, о котором мы уже говорили, когда обсуждали мазер. Вебер изготовил алюминиевый цилиндр весом несколько тонн, который резонировал на частоте около 1 кГц. Он объявил, что получил положительные результаты, но никто не подтвердил их. Затем другие детекторы подобного типа были построены в ряде институтов во всем мире. Лучшие из этих устройств способны зафиксировать смещение на уровне 10
Говорят: история умеет хранить свои тайны. Справедливости ради добавим: способна она порой и проговариваться. И при всем стремлении, возникающем время от времени кое у кого, вытравить из нее нечто нежелательное, оно то и дело будет выглядывать наружу этими «проговорками» истории, порождая в людях вопросы и жажду дать на них ответ. Попробуем и мы пробиться сквозь бастионы одной величественной Тайны, пронзающей собою два десятка веков.
Эта книга для людей которым хочется лучше понять происходящее в нашем мире в последние годы. Для людей которые не хотят попасть в жернова 3-ей мировой войны из-за ошибок и амбиций политиков. Не хотят для своей страны судьбы Гитлеровской Германии или современной Украины. Она отражает взгляд автора на мировые события и не претендуют на абсолютную истину. Это попытка познакомить читателя с альтернативной мировой масс медиа точкой зрения. Довольно много фактов и объяснений автор взял из открытых источников.
"Ладога" - научно-популярный очерк об одном из крупнейших озер нашей страны. Происхождение и географические характеристики Ладожского озера, животный и растительный мир, некоторые проблемы экономики, города Приладожья и его достопримечательности - таковы вопросы, которые освещаются в книге. Издание рассчитано на широкий круг читателей.
Комплект из 16 открыток знакомит читателя с отдельными животными, отличающимися наиболее типичными или оригинальными способами пассивной обороны. Некоторые из них включены в Красную книгу СССР как редкие виды, находящиеся под угрозой исчезновения и поэтому нуждающиеся в строгой охране. В их числе, например, белая чайка, богомол древесный, жук-бомбардир ребристый, бабочки-медведицы, ленточницы, пестрянки. Художник А. М. Семенцов-Огиевский.
В 1915 г. немецкая подводная лодка торпедировала один из.крупнейших для того времени лайнеров , в результате чего погибло 1198 человек. Об обстановке на борту лайнера, действиях капитана судна и командира подводной лодки, о людях, оказавшихся в трагической ситуации, рассказывает эта книга. Она продолжает ставшую традиционной для издательства серию книг об авариях и катастрофах кораблей и судов. Для всех, кто интересуется историей судостроения и флота.
О друзьях наших — деревьях и лесах — рассказывает автор в этой книге. Вместе с ним читатель поплывет на лодке по Днепру и увидит дуб Тараса Шевченко, познакомится со степными лесами Украины и побывает в лесах Подмосковья, окажется под зеленым сводом вековечной тайги и узнает жизнь городских парков, пересечет Белое море и даже попадет в лесной пожар. Путешествуя с автором, читатель побывает у лесорубов и на плотах проплывет всю Мезень. А там, где упал когда-то Тунгусский метеорит, подивится чуду, над разгадкой которого ученые до сих пор ломают головы.