История физики, изложенная курам на смех - [12]
Так вот, пока ученые мужи плавили, кипятили и испаряли различные вещества, травили Майера, совершенствовали термометры и спорили, чья шкала температур лучше, между всеми этими делами как-то незаметно в семье разделов физики появилась на свет еще одна сестричка. Старшие сестры глядели-глядели на младшенькую, так ничего и не поняли и в конце концов махнули на нее рукой. Она в самом деле была какая-то странная - имела дело с совершенно, на первый взгляд, нефизическими величинами. Ведь - откройте любой учебник - физической величиной называется то, что можно измерить. А кто, простите, изобрел энтропиметр? Или хотя бы энтальпиметр? Открою секрет - таких приборов нет. И не предвидится. Так что же, энтропия и энтальпия (список неполный) - это нефизические величины? А вот и не угадали, они - натуральным образом физические! А что не измеряются - так это как раз то исключение, которое лишь подтверждает правило. И, представляете, вот эти простые вещи пришлось растолковывать старшим сестрам, чтобы они относились ко младшенькой, как к родной! Ну, дуры просто. Да еще им, видите ли, не понравилось, как ее нарекли. Действительно, когда счастливые отцы новорожденной собрались на семейный совет по этому поводу, то приключился небольшой конфуз. Было предложено назвать ее красивым именем - Термодинамикой. “Но, господа,- робко возразил какой-то отец.- Взгляните на это дитя! В ней же нет ни одной производной по времени! Какая же она динамика?” - “Оно конечно,- был ответ,- ей бы больше подошло имечко Термостатика. Но, во-первых, это... неприлично. Не дай бог подумают, что это от слова “термостат”. А во-вторых, все, кому не лень, будут потом зубоскалить, что мы, дескать, не знали диалектики. Так что, господа, предложение остается в силе.” А что, имя-то взаправду красивое!
Короче, так или иначе, а поначалу младшенькую недолюбливали. Одна за локон ее дернет, другая - ножку подставит. “Зря вы так, сестрицы милые,- плакала Термодинамика. - Вот ужо, погодите, будет у нас еще одна сестра...- У нее случайно открылся дар, гм, научного предвидения. - Звать сестру будут Механика, но Механика не простая, а Хитромудрая... И тогда бегите ее, ибо она суть волк в овечьей шкуре... не то будет великий плач и скрежет зубовный...”- “Типун-те на язык, дефективная”,- говаривала на это Механика Классическая, не подозревая, что за такие родственные чувства когда- нибудь аукнется. Но Термодинамика лишь тихо вздыхала в ответ и только однажды молвила так: “Истинно говорю вам: необратимы деянья ваши”. Сестры от изумления разинули ротики; первой опомнилась Классическая Механика: “Необратимого не бывает! Ежели кто бросит в меня камень, который полетит по параболе, а я этого не стерплю, так и в обратную он полетит по той же параболе!”- “Конечно,- тихо сказала Термодинамика.- А вот тепло души само по себе переходит только от более нагретого тела к менее нагретому.”
Папаши не могли нарадоваться на такую не по годам умницу, но чужие дяди их восторгов совсем не разделяли. “Послушать, что она мелет, так с ума сойти можно,”- говорили они друг другу. Выходила действительно какая-то несуразица: если теплота является движением отдельных молекул, которое подчиняется обратимым механическим законам, то почему же в совокупности это движение уже необратимо? Так все и посходили бы с ума, если б не Больцман. Он как-то неосторожно выпустил фразочку, которая впоследствии стала крылатой: “Статистика знает все”. Поэтому к нему-то и обратились - давай, мол, если такой грамотный. И, знаете, не ошиблись, этот великий комбинатор в грязь лицом не ударил! По статистике, оказывается, необратимый процесс - просто наиболее вероятный из всех возможных. То есть, чудеса, в общем-то, случаются, но - чем чуднее, тем реже. Просто, как все тривиальное! Разом вернулись к жизни все бывшие пессимисты, которые рассуждали так: если тепло переходит от горячих тел к холодным... то рано или поздно все тела станут теплыми... и всем нам будет крышка... (которую они сговорились называть “тепловой смертью Вселенной”). Ясно же, что ничего чуднее этого не бывает, значит, этого не бывает никогда.
Но это, так сказать, теория. На практике же переход тепла от горячих тел к холодным очень досаждал, особенно Дьюару. Наступил момент, когда Дьюар плюнул, отправился в лавочку к старьевщику и разорился там на пару термосов. Проблема была решена! С тех пор благодарные физики и называют термос “сосудом Дьюара”. Еще бы - ведь впоследствии он оказался настоящей находкой для физики низких температур! Ну, что без этого сосуда делал бы Каммерлинг-Оннес? Разве мог бы он позволить себе искать ответ на вполне конкретный вопрос: что выйдет, если хорошенько заморозить ртуть? А вышло вот что. Пока атомы ртути еще дрожат от холода, они худо-бедно мешают двигаться электронам, проводящим электрический ток (в этом и заключается причина омического сопротивления). Но если мороз еще покрепчает, то, се ля ви, последняя дрожь атомов замирает, а электроны-живчики шастают, не испытывая никакого сопротивления! Это явление назвали сверхпроводимостью (позже, во избежание путаницы, к этому названию добавили слово “низкотемпературная”, потому что высокотемпературной сверхпроводимостью стала заниматься, соответственно, физика высоких температур).
Канонизированная версия появления теории относительности (ТО), вкратце, такова. На рубеже XIX-XX веков был в оптике движущихся тел жуткий кризис. Физики захлебнулись в противоречиях, сидели в прострации и не знали, что делать дальше. Тут-то Эйнштейн и вывел этих недотёп на путь истинный. Все-то противоречия его ТО устранила, все-то эксперименты она объяснила, да ещё кучу предсказаний сделала – и все они великолепно подтвердились на опыте! Ну, красная цена канонизированным версиям хорошо известна: «Боже мой, что скажет история?» - «Да не волнуйтесь, история солжёт, как всегда!»И точно! Никаких противоречий ТО не устранила: она их послала куда подальше, а от себя новых насадила, ласково называя их парадоксами.
Помните, как в школе мы все замирали словно кролики перед удавом перед законом про "всемирное тяготение" всех масс в мире друг к другу. Нам рисовали на доске двухэтажную формулу, а вместо её доказательства рассказывали анекдот про яблоко, поразившее в темечко спящего автора, который проснулся от удара и тут же этот самый закон записал. Особо сомневающимся в факте взаимного тяготения масс предлагалось для доказательства спрыгнуть откуда-нибудь повыше и посмотреть, что будет.Позже, в институте, доказательство этого закона тоже как-то проскакивали на большой скорости, без ненужных подробностей.И, как оказалось, далеко не случайно.
Квантовая теория приводит в трепет даже многих физиков. Ох, как они горды тем, что всякие там доморощенные опровергатели основ суются со своими умничаниями в самые разные области – и в классическую механику, и в электродинамику, и, в особенности, в теорию относительности – но никто не покушается на квантовую теорию! «Даже этим олухам ясно, - веселятся академики, - что без квантовой теории люди бы до сих пор жили в пещерах и бегали с каменными топорами!» Без квантовой теории, мол, не было бы лазеров – а без лазеров, девочки и мальчики, не было бы у вас таких балдёжных дискотек! Без квантовой теории, мол, не было бы понимания того, как движутся электроны в металлах и полупроводниках – а без этого понимания, девочки и мальчики, не было бы у вас ни компьютеров, ни мобильных телефончиков! Откуда девочкам и мальчикам знать, что всё это – шутки? Лазеры, компьютеры, мобильные телефончики – своим появлением они вовсе не обязаны квантовой теории.
В нашей науке достигнут максимум её независимости не только от общества, но и от здравого смысла. За наш счет ученые занимаются тем, чем сами хотят. Они сами отчитываются перед собой и присваивают друг другу оплачиваемые нами впоследствии звания. Они сейчас борются за эксклюзивное право исключительно самостоятельно определять, что есть наука, а что нет. Более того, они желают даже на государственном уровне запрещать другим людям заниматься (даже за собственный счет) тем, что тем интересно, но что противоречит текущим научным фантазиям (пардон, "фундаментальным теориям").Если в обычной жизни обнаруживается чья-то ошибка, её просто исправляют.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.