Истина и доказательство - [8]
Известно, что все существующие математические дисциплины могут быть представлены как формализованные теории. Формальные доказательства в них могут быть приведены для самых глубоких и самых сложных математических теорем, которые первоначально были установлены с помощью интуитивных аргументов.
* * *
Несомненно, что великим достижением современной логики была замена старого психологического понятия доказательства точным, простым понятием чисто формального характера, но именно простота нового понятия оказывается ахиллесовой пятой. Чтобы оценить понятие формального доказательства, мы должны выяснить его отношение к понятию истины. Прежде всего формальное доказательство является процедурой, стремящейся к получению новых истинных предложений. Такая процедура будет адекватной только в том случае, если все предложения, полученные с помошью доказательства, будут истннными, а все истинные высказывания могут быть доказанными. Таким образом, естественно возникает проблема: является ли на самом деле формальное доказательство адекватной процедурой для получения истины? Иными словами, совпадает ли множество всех (формально) доказуемых предложений с множеством всех истинных предложений? Мы рассмотрим эту проблему на материале частной, очень элементарной математической дисциплины, а именно арифметики натуральных чисел (элементарной теории чисел). Мы предполагаем, что эта дисциплина представляет собой формализованную теорию. Словарь теории состоит из переменных, таких, как m, n, p..., представляющих произвольные натуральные числа, из цифр 0, 1, 2..., обозначающих конкретные числа, символов, обозначаюших некоторые обычные отношения между числами и операции над числами, например, =, <, >, +, −, и, наконец, некоторых логических терминов ― пропорциональных связок («и»›, «или», «если», «не») и кванторов (выражений типа «для каждого числа», «для некоторого числа n»), синтаксических правил и правил вывода.
Из первого раздела мы знаем, что, взяв данный язык как язык-объект, мы можем построить соответствующий метаязык и сформулировать в нём материально адекватную дефиницию истины. Это позволяет нам утверждать, что все предложения, определённые с помощью этой дефиниции, составляют множество истинных предложений. В самом деле, дефиниция утверждает, что некоторым условиям, сформулированным в метаязыке, удовлетворяют все элементы этого множества, то есть все истинные предложения, и причём только эти элементы. Еще более легко можно сформулировать в метаязыке множество доказуемых предложений (дефиниция полностью согласуется с объяснением понятия формального доказательства, которое было дано во втором разделе). Строго говоря, дефиниции как истины, так и доказуемости принадлежат к новой теории, сформулированной в метаязыке и специально предназначенной для изучения формализованного арифметического языка. Новая теория называется метатеорией, или, более точно, метаарифметикой. Мы не будем рассматривать здесь в деталях тот путь, следуя по которому строится метатеория, её аксиомы, неопределяемые термины и т.д. Мы только обращаем внимание на то, что в рамках этой метатеории мы формулируем и решаем проблему, совпадает ли множество доказуемых предложений с множеством истинных предложений.
В нашей работе «Понятие истины в формализованных языках» было показано, что решение проблемы является негативным. Мы дадим здесь очень приближённое описание того метода, с помощью которого было получено это доказательство. Главная идея доказательства тесно связана с той идеей, на которую опирался Гёдель в своей знаменитой статье о неполноте формальных теорий.[8]
В разделе первом было отмечено, что метаязык, который позволяет нам определить и обсуждать понятие истины, должен быть достаточно богатым. Он содержит в целом весь язык-объект как свою часть, и поэтому мы можем говорить на нём о натуральных числах, множествах чисел, отношениях между числами и т.д. Но он также содержит и термины, необходимые для обсуждения свойств языка-объекта и его компонент. Следовательно, мы можем говорить на метаязыке о выражениях и, в частности, о предложениях, о множествах предложений, об отношениях между предложениями и т.д. Следовательно, в метатеории мы можем изучать свойства этих различных видов объектов и устанавливать связи между ними. Используя описание предложений, получаемых с помощью синтаксических правил языка-объекта, легко расположить все предложения (от простейших до всё более и более сложных) в бесконечный ряд и последовательно пронумеровать их. Мы соотносим с каждым предложением натуральное число таким образом, что два числа будут соотноситься с двумя различными предложениями. Другими словами, мы устанавливаем взаимнооднозначное соответствие между предложениями и числами. Это, в свою очередь, приводит к подобному же соответствию между множеством предложений и множеством чисел, а также отношений между предложениями и отношений между числами. В частности, мы можем рассматривать номера доказуемых предложений и номера истинных предложений. Для краткости мы назовем их доказуемыми номерами и истинными номерами. Наша главная проблема сведётся тогда к вопросу: являются ли тождественными множество доказуемых номеров и множество истинных номеров?
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Макс Нордау"Вырождение. Современные французы."Имя Макса Нордау (1849—1923) было популярно на Западе и в России в конце прошлого столетия. В главном своем сочинении «Вырождение» он, врач но образованию, ученик Ч. Ломброзо, предпринял оригинальную попытку интерпретации «заката Европы». Нордау возложил ответственность за эпоху декаданса на кумиров своего времени — Ф. Ницше, Л. Толстого, П. Верлена, О. Уайльда, прерафаэлитов и других, давая их творчеству парадоксальную характеристику. И, хотя его концепция подверглась жесткой критике, в каких-то моментах его видение цивилизации оказалось довольно точным.В книгу включены также очерки «Современные французы», где читатель познакомится с галереей литературных портретов, в частности Бальзака, Мишле, Мопассана и других писателей.Эти произведения издаются на русском языке впервые после почти столетнего перерыва.
В книге представлено исследование формирования идеи понятия у Гегеля, его способа мышления, а также идеи "несчастного сознания". Философия Гегеля не может быть сведена к нескольким логическим формулам. Или, скорее, эти формулы скрывают нечто такое, что с самого начала не является чисто логическим. Диалектика, прежде чем быть методом, представляет собой опыт, на основе которого Гегель переходит от одной идеи к другой. Негативность — это само движение разума, посредством которого он всегда выходит за пределы того, чем является.
В Тибетской книге мертвых описана типичная посмертная участь неподготовленного человека, каких среди нас – большинство. Ее цель – помочь нам, объяснить, каким именно образом наши поступки и психические состояния влияют на наше посмертье. Но ценность Тибетской книги мертвых заключается не только в подготовке к смерти. Нет никакой необходимости умирать, чтобы воспользоваться ее советами. Они настолько психологичны и применимы в нашей теперешней жизни, что ими можно и нужно руководствоваться прямо сейчас, не дожидаясь последнего часа.
На основе анализа уникальных средневековых источников известный российский востоковед Александр Игнатенко прослеживает влияние категории Зеркало на становление исламской спекулятивной мысли – философии, теологии, теоретического мистицизма, этики. Эта категория, начавшая формироваться в Коране и хадисах (исламском Предании) и находившаяся в постоянной динамике, стала системообразующей для ислама – определявшей не только то или иное решение конкретных философских и теологических проблем, но и общее направление и конечные результаты эволюции спекулятивной мысли в культуре, в которой действовало табу на изображение живых одухотворенных существ.
Книга посвящена жизни и творчеству М. В. Ломоносова (1711—1765), выдающегося русского ученого, естествоиспытателя, основоположника физической химии, философа, историка, поэта. Основное внимание автор уделяет философским взглядам ученого, его материалистической «корпускулярной философии».Для широкого круга читателей.
В монографии на материале оригинальных текстов исследуется онтологическая семантика поэтического слова французского поэта-символиста Артюра Рембо (1854–1891). Философский анализ произведений А. Рембо осуществляется на основе подстрочных переводов, фиксирующих лексико-грамматическое ядро оригинала.Работа представляет теоретический интерес для философов, филологов, искусствоведов. Может быть использована как материал спецкурса и спецпрактикума для студентов.