Искусство статистики. Как находить ответы в данных - [6]
Основным источником данных стала Национальная статистика эпизодов в больницах (HES), полученная на основе информации, введенной низкооплачиваемыми программистами. У врачей HES пользовалась плохой репутацией, но гигантским преимуществом этого источника было то, что его можно было связать с национальными данными о смертности. Существовала также параллельная система данных, вносимых непосредственно в Реестр операций на сердце (CSR), созданный профессиональным сообществом хирургов.
Хотя оба источника, по логике, должны быть примерно одинаковыми, на практике они демонстрировали существенное расхождение: за 1991–1995 годы HES указывала 62 смерти при 505 операциях на открытом сердце (14 %), а CSR – 71 смерть при 563 операциях (13 %). В нашем распоряжении было еще не менее пяти дополнительных местных источников сведений – от анестезиологической документации до собственных журналов хирургов. Бристоль располагал множеством данных, но ни один из источников не мог считаться истинным и никто не брал ответственность за анализ результатов хирургических вмешательств и принятие мер.
Мы подсчитали, что если бы в бристольской больнице средний риск для пациентов был таким же, как в целом по Великобритании, то за указанный период было бы зафиксировано 32 смерти, а не 62 фактических, что мы определили как «30 избыточных смертей в период с 1991 по 1995 год»[25]. Цифры менялись в зависимости от источников данных, и может показаться необычным, что мы даже не смогли установить основные факты о количестве операций и их результатах, хотя нынешние системы регистрации стоило бы улучшить.
Наши выводы широко освещались в прессе, и бристольское расследование привело к значительному изменению отношения к отслеживанию ситуации в здравоохранении: контроль над медициной больше не доверяли ей самой. Появились механизмы для публичного представления данных о выживаемости в больницах, хотя, как мы сейчас увидим, даже способ отображения может влиять на их восприятие аудиторией.
Данные, фиксирующие, произошли какие-то события или нет, известны как бинарные (двоичные) данные, поскольку они могут выражаться только двумя значениями, например да или нет, болен или здоров. Из набора бинарных данных можно извлечь обобщенную информацию – общее количество и доля случаев, когда событие произошло.
В этой главе подчеркивается важность способа представления статистических данных. В каком-то смысле мы переходим к последней стадии цикла PPDAC, на которой делаются заключения; и хотя форма их подачи традиционно не считается значимой темой в статистике, растущий интерес к визуализации данных отражает изменения в данном вопросе. Поэтому в этой и следующей главах мы сосредоточимся на способах отображения данных, позволяющих быстро уловить суть происходящего без детального анализа. И начнем с рассмотрения альтернативных способов их представления, которые – во многом благодаря бристольскому расследованию – теперь стали общедоступны.
В табл. 1.1 отображены результаты лечения примерно 13 тысяч детей, перенесших операцию на сердце в Соединенном Королевстве Великобритании и Северной Ирландии в 2012–2015 годах[26]. В течение 30 дней после операции умерли 263 ребенка, и, безусловно, каждая из смертей – трагедия для семьи. Для них будет слабым утешением то, что со времени бристольского расследования показатель выживаемости значительно повысился и теперь составляет 98 %, поэтому у семей с детьми, нуждающимися в операции на сердце, более обнадеживающие перспективы.
Таблица 1.1
Результаты операций на сердце у детей в больницах Соединенного Королевства Великобритании и Северной Ирландии за 2012–2015 годы с точки зрения выживаемости в течение 30 дней после операции
Таблицу можно считать видом графического представления данных, где для привлекательности и удобочитаемости требуется правильно подобрать цвет, шрифт и слова. На эмоциональную реакцию аудитории может также влиять выбор столбцов для отображения. В табл. 1.1 показаны данные об умерших и выживших, однако в США сведения о результатах операций представлены в виде показателя смертности, а в Великобритании – в виде показателя выживаемости. Такая форма подачи называется эффектом фрейминга, и он интуитивно понятен и хорошо документирован: например, «смертность – 5 %» звучит и воспринимается хуже, чем «выживаемость – 95 %». Указание фактического количества смертей и их процентной доли также может создать впечатление о повышении риска, поскольку эту величину можно представить как группу реальных людей.
Классическим примером того, как фрейминг меняет эмоциональное восприятие какого-нибудь показателя, стали плакаты, появившиеся в 2011 году в лондонском метро, которые гласили, что «99 % молодых лондонцев не совершают серьезных насильственных преступлений». Предполагалось, что такие заявления будут способствовать спокойствию пассажиров. Однако мы могли бы изменить их эмоциональное воздействие с помощью двух простых вещей. Во-первых, с помощью заявления, что 1 % молодых лондонцев совершают серьезные насильственные преступления. Во-вторых, учитывая, что население Лондона составляет около 9 миллионов человек, возраст примерно 1 миллиона из них – от 15 до 25 лет, и если считать эту категорию молодежью, то получается, что в городе проживает 1 % от миллиона, или 10 тысяч агрессивно настроенных молодых людей. А такая цифра звучит удручающе и уж вовсе не ободряет. Обратите внимание на две хитрости, используемые для манипулирования воздействием таких статистических данных: переход от позитива к негативу и превращение процентной доли в фактическое количество людей.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
Цель книги доктора философских наук Б. В. Бирюкова и кандидата философских наук В. Н. Тростникова - создать общую картину подготовки и развития логико-математических аспектов кибернетики. Авторы рассказывают о длительном развитии науки логики, возникшей еще в Древней Греции, прослеживают непрерывающуюся нить преемственности, тянущуюся от Аристотеля к "чуду XX века" - быстродействующим кибернетическим устройствам.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
Один из лучших популяризаторов науки Фрэнк Вильчек в доступной форме описывает основные составляющие физической реальности — пространство, время, материю, энергию и динамическую сложность. Вы узнаете о теории Большого взрыва и возникновении Вселенной, познакомитесь с одними из крупнейших проектов современности: охотой на частицу Хиггса и поиском гравитационных волн, положивших начало новому виду «многоканальной» астрономии. Книга лауреата Нобелевской премии по физике для всех, кто хочет приблизиться к пониманию устройства Вселенной.
Если вы сомневались, что вам может пригодиться математика, эта книга развеет ваши сомнения. Красота приведенных здесь 10 уравнений в том, что пронизывают все сферы жизни, будь то грамотные ставки, фильтрование значимой информации, точность прогнозов, степень влияния или эффективность рекламы. Если научиться вычленять из происходящего данные и математические модели, то вы начнете видеть взаимосвязи, словно на рентгене. Более того, вы сможете управлять процессами, которые другим кажутся хаотичными. В этом и есть смысл прикладной математики. На русском языке публикуется впервые.
Популяризатор науки мирового уровня Стивен Строгац предлагает обзор основных понятий матанализа и подробно рассказывает о том, как они используются в современной жизни. Автор отказывается от формул, заменяя их простыми графиками и иллюстрациями. Эта книга – не сухое, скучное чтение, которое пугает сложными теоретическими рассуждениями и формулами. В ней много примеров из реальной жизни, которые показывают, почему нам всем нужна математика. Отличная альтернатива стандартным учебникам. Книга будет полезна всем, кто интересуется историей науки и математики, а также тем, кто хочет понять, для чего им нужна (и нужна ли) математика. На русском языке публикуется впервые.
Если упражнения полезны, почему большинство их избегает? Если мы рождены бегать и ходить, почему мы стараемся как можно меньше двигаться? Действительно ли сидячий образ жизни — это новое курение? Убивает ли бег колени и что полезнее — кардио- или силовые тренировки? Дэниел Либерман, профессор эволюционной биологии из Гарварда и один из самых известных исследователей эволюции физической активности человека, рассказывает, как мы эволюционировали, бегая, гуляя, копая и делая другие — нередко вынужденные — «упражнения», а не занимаясь настоящими тренировками ради здоровья. Это увлекательная книга, после прочтения которой вы не только по-другому посмотрите на упражнения (а также на сон, бег, силовые тренировки, игры, драки, прогулки и даже танцы), но и поймете, что для борьбы с ожирением и диабетом недостаточно просто заниматься спортом.