Искусство схемотехники. Том 3 [Изд.4-е] - [7]
Рис. 11.7.Автовекторизуемое прерывание.
Внешняя цепь обнаруживает цикл подтверждения по сигналам FC0-2 и одновременно с AS' устанавливает входной сигнал VPA'. После этого ЦП осуществляет переход на программу обслуживания, соответствующую уровню IPL прерывания. Для перехода используются векторы (т. е. 32-разрядные адреса программ обслуживания), расположенные по абсолютным адресам $68, $74 или $7C. Если число прерывающих устройств не превышает трех, автовекторизация весьма удобна. Собственно говоря, устройств может быть и больше, но вам придется опрашивать регистры состояния всех «подозрительных» устройств (т. е. устройств, подключенных к обслуживаемому уровню прерываний), чтобы найти виновника. И лишь в случае, когда у вам много потенциальных источников прерываний (маловероятная ситуация в небольшом устройстве на базе МП 68008), и к тому же требуется обеспечить минимальные временные задержки, целесообразно обратиться к схеме прерываний с подтверждением.
Полностью векторизируемые прерывания реализуются следующим образом. Прежде всего оставьте сигнал VPA' на входе ЦП в сброшенном состоянии (высокий уровень). Организуйте схему таким образом, чтобы каждое устройство, работающее в режиме прерываний, выставляло бы свой вектор на линии данных в ответ на цикл чтения ЦП, выполняемый при установленных в высокое состояние сигналах FC0-2 и при уровне IPL (считываемом с линией А1-3), совпадающем с уровнем запроса устройства. При этом схема должна обеспечить выдачу вектора только одним прерывающим устройством, даже если несколько устройств одновременно выставили запросы на прерывание. Этого можно добиться, используя сигнал приоритета прерывания INPT, проходящий последовательно через все устройства, образующие, таким образом, приоритетную цепочку, как это было описано в разд. 10.11; тем самым гарантируется, что подтверждение прерывания выполняется только устройством (соответствующего уровня IPL), которое электрически расположено ближе других к ЦП, даже если запросы на прерывание поступают от нескольких устройств одного уровня IPL.
Другой, более элегантный метод показан на рис. 11.8.
Рис. 11.8.Полновекторизованное прерывание.
Здесь нет необходимости использовать неуклюжую цепочечную структуру, которая заменяется линиями запроса от каждого устройства. Состояния этих линий фиксируются в начале каждого цикла магистрали (фронтом сигнала AS) и поступают в дешифратор приоритета (который генерирует двоичный адрес возбужденного входа с максимальным номером, см. разд. 8.14). Кроме этого, дешифратор генерирует выходной сигнал (GS'), если возбуждается любой из входов; этот сигнал используется для инициации прерывания ЦП. Для простоты мы поместили прерывания от всех устройств на один уровень IPL. ЦП отзывается на прерывание, сохраняя в стеке адрес возврата, после чего инициирует цикл подтверждения (рис. 11.6). В течение цикла подтверждения наша схема устанавливает вектор (образованный в схеме приоритетного отбора), а также сигнал DTACK'. После этого ЦП выполняет векторный переход на соответствующий обработчик.
Рассмотренная схема проста в реализации, и для семейства МП 68000 она работает быстрее, чем схема автовекторизации. Далее, относительно просто достигается увеличение числа прерывающих устройств степенями 8 при использовании дополнительных микросхем `574 и `148. От каждого периферийного устройства требуется выделенная линия (не одна линия шины); хотя при этом нарушается симметрия шины данных, такой способ предпочтительнее приоритетной цепочки, которая совершенно перестает работать, если забыть надеть перемычки на неиспользуемые разъемы. Фактически в новых компьютерных магистралях (например, магистраль NuBus машины Macintosh II) все чаще используются линии прерываний, разведенные по разъемам.
Отметим любопытную (и немаловажную) деталь в приведенной схеме. Вам может показаться странным, что индивидуальные запросы прерываний, генерируемые в устройствах с помощью фиксируемых бит (см., например, рис. 10.12), повторно фиксируются в схеме — 574. Причина этого носит тонкий характер. Прерывающие устройства, как правило, являются асинхронными по отношению к тактовым сигналам ЦП, и могут генерировать прерывания в любое время. Если второе периферийное устройство пошлет запрос прерывания в тот момент, когда ЦП считывает вектор первого прерывающего устройства, а фиксаторы в схеме обработки прерываний отсутствуют, установленный на шине вектор изменится «на полдороги» (в течение цикла подтверждения прерывания и получения вектора), что приведет к непредсказуемым результатам. Вы можете возразить, что такая ситуация маловероятна, и будете правы; однако она может возникнуть и вы даже можете оценить вероятность ее появления. Откладывая момент принятия решения о «намерении прервать» на начало каждого цикла шины, мы устраняем отмеченную проблему (вообще говоря, из-за явления «метастабильности» незначительная вероятность ошибки остается; если вам не хватает поводов для беспокойства, см. разд. 8.17).
>Упражнение 11.4. Пусть мы рискнули отказаться от фиксирующего регистра `574 в установке, содержащей два асинхронных устройства, посылающих сигналы прерываний со скоростью 1000 прерываний в секунду каждое. Предположим, что цикл получения вектора имеет критическое временное окно в 1 нc, в течение которого смена установленного вектора приведет к чтению неправильного вектора (т. е. ЦП прочитает номер вектора, отличный от обоих установленных векторов). Оцените, сколь часто ЦП, осуществляя векторный переход, будет попадать пальцем в небо (с аварией системы).
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах.Том 2 содержит сведения о прецизионных схемах и малошумящей аппаратуре, о цифровых схемах, о преобразователях информации, мини- и микроЭВМ и микропроцессорах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.
Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры; внимание читателя сосредоточивается на тонких аспектах проектирования и применения электронных схем.На русском языке издается в трех томах. Том 1 содержит сведения об элементах схем, транзисторах, операционных усилителях, активных фильтрах, источниках питания, полевых транзисторах.Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов.
Переполненная аудитория большого зала затихла в ожидании. Лектор подошел к небольшому аппарату и включил его. Из мощных громкоговорителей раздались звуки симфонического оркестра, затем послышалось пение. Пел Леонид Витальевич Собинов — замечательный русский певец, умерший много лет назад. Голос артиста, запечатленный еще в его молодости, сохранился благодаря чудесному достижению техники — звукозаписи. Теперь для нас в этом нет ничего необыкновенного. Каждый, слушая дома граммофон, присутствует при подобном чуде.
Книга является практическим введением в изучение начал радиоэлектроники с помощью компьютера и самостоятельного технического творчества. В популярной форме рассказывается о радиоэлектронике, поясняется смысл используемых понятий и явлений, приводятся занимательные эпизоды из истории изобретений и открытий. Основу практической части составляют описания простейших и в тоже время интересных и полезных самоделок из электронных наборов Мастер КИТ. Даются подробные советы по их сборке, наладке и применению в быту.
Книга состоит из описаний простых конструкций, содержащих электронные компоненты. Тематика изделий — электронные игрушки и сувениры.Содержание книги является логическим продолжением содержания двух первых книг — «Роботы своими руками. Игрушечная электроника» и «Игрушечная электроника NEXT», опубликованных в издательстве СОЛОН-ПРЕСС.Книга будет полезна начинающим электронщикам разного возраста, как пособие по изготовлению практических изделий.
В данной книге автор касается теоретических и практических основ диагностики и ремонта электротехнической и электронной аппаратуры. Приведены описания технических средств, предназначенных для этих целей. Исследованы методы поиска неисправностей в промышленном, бытовом, медицинском оборудовании. Рассмотрены типичные неполадки радио-, теле-, микропроцессорных и других систем.Для инженеров, техников, обслуживающего персонала и радиолюбителей любого уровня.
Книга известного американского специалиста в простой и доступной форме знакомит с основами современной электроники. Основная ее цель — теоретически подготовить будущих специалистов — электриков и электронщиков — к практической работе, поэтому кроме детального изложения принципов работы измерительных и полупроводниковых приборов, интегральных микросхем рассмотрены общие вопросы физики диэлектриков и полупроводников. Обсуждение общих принципов микроэлектроники, описание алгоритмов цифровой обработки информации сопровождается примерами практической реализации устройств цифровой обработки сигналов, описаны принципы действия и устройство компьютера.
Детально изложены практические аспекты самостоятельного изготовления и эксплуатации квадрокоптеров. Рассмотрены все этапы: от выбора конструкционных материалов и подбора компонентов с минимизацией финансовых затрат до настройки программного обеспечения и ремонта после аварии. Уделено внимание ошибкам, которые часто совершают начинающие авиамоделисты. В доступной форме даны теоретические основы полета мультироторных систем и базовые понятия работы со средой Arduino IDE. Приведено краткое описание устройства и принципа работы систем GPS и Глонасс, а также современных импульсных источников бортового питания и литий-полимерных батарей.