Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева - [127]
Неудивительно, что перед «островом стабильности» раскинулась область очень неустойчивых элементов, примерно в центре которой находится франций. Восемьдесят седьмой элемент находится между магическим ядром № 82 и условно стабильным ядром № 92. Поэтому некоторые нейтроны и протоны франция постоянно «норовят выпрыгнуть» из атома и отправиться в свободное плавание. На самом деле, из-за крайне непрочной структуры ядра франций не только является самым нестабильным элементом, встречающимся в природе, но и уступает по стабильности даже всем искусственно полученным элементам вплоть до сто четвертого – резерфордий. Если правомерно
выделить на карте такой «пролив нестабильности», то франций будет пускать пузырьки с самого его дна.
Однако франций в природе встречается чуть чаще, чем астат. Почему? Дело в том, что многие радиоактивные элементы, расположенные вокруг урана, на том или ином промежуточном этапе распада превращаются во франций. А что же франций? Вместо того чтобы подвергаться обычному альфа-распаду и в результате (потеряв два протона) превращаться в астат, этот атом более чем в 99,9 % случаев облегчает свое перегруженное ядро, претерпевая бета-распад, и становится радием. Затем радий проходит целый ряд стадий альфа-распада, минуя астат. Иными словами, механизм радиоактивного распада многих нестабильных атомов на клетке франция немного пробуксовывает – именно поэтому количество франция в земной коре измеряется несколькими сотнями граммов. В то же время франций не позволяет своим атомам превращаться в астат, из-за чего астат является еще более редким. Загадка решена.
Итак, с проливом разобрались, а что же с «островом стабильности»? Весьма маловероятно, что химикам удастся синтезировать все возможные элементы вплоть до очень крупных магических ядер. С другой стороны, возможно, все же удастся получить элемент № 114, затем № 126 и продолжать путь к «острову» уже оттуда. Некоторые ученые полагают, что при добавлении электронов к сверхтяжелым ядрам стабильность таких атомов может повыситься. Возможно, электроны будут действовать как пружины и амортизаторы, впитывая ту энергию, которую атомы обычно тратят на саморазрушение. Если эта гипотеза подтвердится, возможно, будут синтезированы и элементы после 140-го, 160-го и 180-го номеров. «Остров стабильности» превратится в архипелаг-цепочку. Такие стабильные «острова» будут отстоять все дальше друг от друга. Но, возможно, ученые смогут постепенно преодолевать эти огромные расстояния в новом периодическом архипелаге – как полинезийцы на своих лодках осваивали Океанию.
Самое интересное заключается в том, что эти новые элементы не будут просто утяжеленными аналогами известных сегодня элементов, а могут обладать совершенно новыми свойствами (вспомните, как сильно свинец отличается от кремния и углерода). Согласно некоторым расчетам, если электроны смогут укротить сверхтяжелое ядро и повысить его стабильность, то и ядро сможет управлять электронами. В таком случае электроны, возможно, начнут заполнять оболочки и орбитали атома в необычном порядке. Элемент, который согласно периодическому закону должен проявлять свойства тяжелого металла, может слишком рано заполнить свои орбитали; в таком случае получится элемент типа металлического благородного газа.
Не хотелось бы гневить богов, но ученые уже придумали названия для этих гипотетических элементов. Вероятно, вы заметили, что тяжелые элементы в самом низу таблицы имеют трехбуквенные, а не двухбуквенные обозначения, причем все они начинаются с и. Опять же, все дело во влиянии древнегреческого и латыни. Еще не открытый элемент 119 Uue называется «унунений», сто двадцать второй элемент Ubb – унбибий и т. д.[170] Эти элементы получат «настоящие» названия лишь после того, как их удастся синтезировать, но пока ученые могут просто «пометить» их латинскими словами-формулами – и не только их, но и другие элементы, вызывающие наибольший интерес, например, магическое ядро 184, названное «уноктквадий». (И слава богу! Прямо на наших глазах отмирает привычная двухчастная классификация видов в биологии – та самая, в которой домашняя кошка называется Felis catus. На смену ей приходят хромосомные обозначения ДНК, напоминающие штрихкоды. Прощай, Homo sapiens, человек разумный, здравствуй ТЦАТЦГГТЦАТТГГ… Таким образом, элементы на «у-» остаются одним из последних бастионов латыни в науке – там, где этот язык некогда доминировал[171].)
Итак, как далеко может зайти подобное путешествие с острова на остров? Доведется ли нам наблюдать пики маленьких вулканов, теряющиеся далеко в бесконечности за границами периодической системы, и называть их какими-нибудь протяжными именами вроде э-э-э-э-э…энний, элемент № 999? Увы, нет. Даже если ученые найдут способ склеивания сверхтяжелых элементов и смогут бросить якорь на очень далеких «островках стабильности», то их, образно выражаясь, практически сразу смоет в бушующий атомный океан.
Чтобы понять причину, вернемся к рассказу об Альберте Эйнштейне и к той величайшей ошибке, которую он совершил в своей научной карьере. Несмотря на распространенное мнение поклонников Эйнштейна, он получил Нобелевскую премию по физике отнюдь не за Специальную или Общую теорию относительности. Награда была присуждена Эйнштейну за объяснение странного квантово-механического явления, которое называется фотоэлектрическим эффектом. Он одним из первых доказал, что квантовая механика – не просто неуклюжая система допущений, призванная обосновать непостижимые эксперименты, а самая настоящая реальность, пусть и необычная. Тот факт, что именно Эйнштейн объяснил явление фотоэффекта, можно назвать иронией судьбы сразу по двум причинам. Во-первых, с возрастом Эйнштейн становился все придирчивее и постепенно стал воспринимать квантовую механику с изрядным скептицизмом. Ее статистическая и глубоко вероятностная природа слишком напоминала Эйнштейну азартные игры, именно поэтому он однажды произнес свой знаменитый афоризм «Бог не играет в кости». Эйнштейн был неправ, и как жаль, что большинство людей так и не услышали фразу, которую в ответ произнес Нильс Бор: «Эйнштейн, прекратите указывать Богу, что ему делать».
Книга «Синдром Паганини и другие правдивые истории о гениальности, записанные в нашем генетическом коде» посвящена одному из самых важных и интересных разделов биологии – генетике. Вы познакомитесь с историей генетики и узнаете о расшифровке структуры ДНК и проекте «Геном человека». Для всех увлеченных и неравнодушных.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Сэм Кин, известный американский писатель, признанный мэтр жанра научно-популярной литературы, предлагает увлекательное путешествие во времени. Вы узнаете, как на протяжении столетий менялось представление о мозге и как курьезные, порой страшноватые, а иногда и просто фантастические случаи помогали совершить прорыв в науке и медицине. Каждая глава книги представляет собой невероятную, увлекательную и правдивую историю о том, на что способен мозг человека, если что-то (или кто-то) воздействует на него со стороны, будь то болезнь, скальпель хирурга или… железный лом.
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В Тихом океане, отделенные от ближайшего материка тысячей километров морских просторов, лежат удивительные вулканические острова. Своеобразна и экзотична природа Галапагосов. На черных лавовых скалах греются ящерицы игуаны, сохранившиеся здесь со времен «века рептилий», медлительно движутся гигантские черепахи. На островах тесно уживаются животные и растения тропиков и Заполярья: лианы и мхи, тропические птицы и чайки Антарктики, пингвины, морские львы и бакланы. Живо и увлекательно, на основе личных впечатлений рассказывает об уникальном животном мире «зачарованных островов» молодой зоолог Иренеус Эйбль-Эйбесфельдт.
В книге кандидата биологических наук Г. Свиридонова рассказывается о рациональном и эффективном использовании природных богатств на благо человека, об их охране и воспроизводстве. Издание рассчитано на массового читателя.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.
Книга посвящена чрезвычайно увлекательному предмету, который, к сожалению, с недавних пор исключен из школьной программы, – астрономии. Читатель получит представление о природе Вселенной, о звездных и планетных системах, о ледяных карликах и огненных гигантах, о туманностях, звездной пыли и других удивительных объектах, узнает множество интереснейших фактов и, возможно, научится мыслить космическими масштабами. Книга адресована всем, кто любит ясной ночью разглядывать звездное небо.