Инсектопедия - [8]
ICRP вычисляет пороговое значение по линейной кривой, которая экстраполируется исходя из частоты генетических (репродуктивных) отклонений от нормы, уровня заболеваемости раком, в том числе лейкемией, среди тех, кто пережил крупномасштабные атомные катастрофы.
Когда начались эти подсчеты, основной массив информации добывался путем наблюдений за теми, кто пережил бомбардировки Хиросимы и Нагасаки в 1945 году. Первичная доза радиации в этих местах была крайне велика, а получили ее люди за краткосрочный период. Получилась кривая, показывающая эффект воздействия искусственного радиоактивного излучения высокой интенсивности. Низкоинтенсивная радиация – например, долговременные выбросы атомных электростанций, функционирующих в нормальном режиме, – кажется относительно (если не абсолютно) слабой: ее воздействие не выходит за пределы «естественного» радиационного фона, испускаемого некоторыми химическими элементами, которые содержатся в земной коре. Предполагается, что большие дозы воздействуют сильно, а малые дозы – слабо.
Некоторые ученые, не связанные с атомной индустрией и часто выступающие сообща с общественными организациями из районов вблизи АЭС, предлагают альтернативный график. Идя по стопам канадского физика Абрама Петкау, осуществившего несколько исследований в семидесятые годы ХХ века, они утверждают, что воздействие радиации лучше всего отражает не «официальная» линейная кривая, где двукратное количество радиации оказывает вдвое сильнейший эффект, а «надлинейная» кривая, фиксирующая намного более сильный эффект от малых доз. Согласно надлинейной кривой, безопасной минимальной дозы выше нуля не существует.
Эти исследователи часто начинают с эпидемиологии: изучают популяции с подветренной стороны атомных установок или ниже по течению рек относительно этих установок, ищут статистически существенные корреляции между локальными очагами заболеваемости и источниками низкоинтенсивного радиоактивного излучения. Исходя из предположения, что существует причинно-следственная связь между излучением и болезнями (эту предпосылку подкрепляет не только эпидемический масштаб некоторых очагов заболеваемости, но и скрытность атомной индустрии), ученые сосредотачиваются на выявлении механизмов сбоев биологических функций, вызываемых низкоинтенсивными дозами [22].
Например, британский специалист по физической химии Крис Басби, борец против ядерной энергетики, делает упор на двух важнейших, но малозамечаемых переменных: развитии клетки и нерегулярном поведении искусственной радиации [23]. Как утверждает Басби, в нормальных условиях клетка (любая) подвергается воздействию радиации примерно раз в год. Если клетка находится в своем нормальном состоянии покоя, она весьма вынослива. Однако в моменты активного репродуцирования (в режиме «починки», который включается при стрессе разных видов) та же самая клетка крайне восприимчива к воздействию радиации. В эти моменты она проявляет значительную нестабильность генома, и два попадания радиации оказывают на нее куда более сильное воздействие, чем одно попадание. Вдобавок, говорит Басби, употребление радиоактивных частиц с пищей и водой оказывает воздействие, которое весьма отличается от воздействия извне – через кожу. Некоторые разновидности внутреннего радиационного воздействия (например, при питье зараженного молока) могут означать многократные удары радиации по одной и той же клетке в течение нескольких часов. Если клетка, находящаяся в режиме активного репродуцирования, подвергнется второму удару искусственной радиации, то, уверяет Басби, вероятность мутации в этой клетке повышается в сто раз.
Согласно «теории второго события» Басби, степень уязвимости клетки перед радиацией зависит от стадии развития клетки в данный момент. Причем эта уязвимость еще более усиливается ввиду того, что волнам искусственной радиации свойственна произвольность, прерывистость. Корнелия объяснила мне произвольность искусственной радиации, проводя аналогию с пулями: неважно, сколько пуль выпущено, кто стреляет и даже где и когда идет стрельба; чтобы ощутить воздействие стрельбы на собственной шкуре, достаточно оказаться в неудачное время в неудачном месте. Линейная кривая ICRP предполагает, что частицы распространяются постоянно, а их воздействие предсказуемое. Если, как утверждают многие, эти предпосылки неверны, то степень восприимчивости окружающей среды к воздействию радиационного заражения, вероятно, намного выше (собственно, эта степень достаточно высока, чтобы объяснить данные эпидемиологии о повышенной смертности в популяциях людей, животных и растений в местах, на которые обрушиваются более или менее постоянные радиоактивные выбросы).
Борцы с низкоинтенсивной радиацией, несомненно, предсказали бы реакцию экспертов на статьи Корнелии в Tages-Anzeiger Magazin. Ученые, подтвердив официальную позицию (согласно которой радиоактивные осадки из Чернобыля воздействовали слишком слабо, чтобы вызывать мутации), попросту заявили, что явление, должно быть, объясняется чем-то другим. По их мнению, методология Корнелии не учитывала должным образом такие альтернативные причины, как воздействие пестицидов и паразитов. Корнелия не предложила базовый материал для сравнения, не дала для сопоставления какой-либо свободный от заражения ареал, где можно было бы замерить нормальный для того или иного биологического вида уровень отклонений. Собственно, указывали ученые (игнорируя тот факт, что Корнелия выступила с утверждениями скромного масштаба), она вообще не привела никаких цифр: ни об уровне доз, ни о частоте дефектов [24]. Ученые отвергли ее наглядные доказательства, отказали ей в экспертной оценке, а если иногда вначале выражали неосмотрительный интерес к ее материалам, то затем отвергали их без объяснений. Так повторялось неоднократно.
Книга посвящена жизни и творчеству выдающегося советского кристаллографа, основоположника и руководителя новейших направлений в отечественной науке о кристаллах, основателя и первого директора единственного в мире Института кристаллографии при Академии наук СССР академика Алексея Васильевича Шубникова (1887—1970). Классические труды ученого по симметрии, кристаллофизике, кристаллогенезису приобрели всемирную известность и открыли новые горизонты в науке. А. В. Шубников является основателем технической кристаллографии.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
«Занимательное дождеведение» – первая книга об истории дождя.Вы узнаете, как большая буря и намерение вступить в брак привели к величайшей охоте на ведьм в мировой истории, в чем тайна рыбных и разноцветных дождей, как люди пытались подчинить себе дождь танцами и перемещением облаков, как дождь вдохновил Вуди Аллена, Рэя Брэдбери и Курта Кобейна, а Даниеля Дефо сделал первым в истории журналистом-синоптиком.Сплетая воедино научные и исторические факты, журналист-эколог Синтия Барнетт раскрывает удивительную связь между дождем, искусством, человеческой историей и нашим будущим.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.