Хаос. Создание новой науки - [68]
>Рис. 6.1. Хаос под микроскопом. Простое уравнение, повторяемое много раз. Файгенбаум сосредоточился на линейных функциях, вычисляя значение одной величины в зависимости от значения другой. Для Популяций животного мира функция выражала соотношение между численностью в текущем и следующем году. Одним из способов наглядного представления таких функций является построение графика, где исходные данные отмечаются на горизонтальной оси, а конечные — на вертикальной. Для каждого значения x существует лишь одно значение y, и оба они образуют форму, представленную сплошной линией. Затем, чтобы изобразить долгосрочное поведение системы, Файгенбаум вычертил траекторию, начинавшуюся с произвольно взятого значения x. Поскольку каждое значение у вновь подставлялось в ту же функцию в качестве новой исходной величины, ученый мог применить нечто вроде схематичного сокращения. Траектория скачками отдалялась от прямой, проведенной под углом 45°, где значения x и y равны. Для эколога наиболее очевидным типом функции, отображающей рост популяции, будет линейная — мальтузианская схема устойчивого и ничем не ограниченного увеличения с фиксированным ежегодным приростом (вверху слева). Более «реалистичные» функции представляют собой дугу, демонстрируя популяции. Здесь изображена так называемая логистическая карта для параболы, заданной функцией y = rx (1-x), где параметр r меняется от 0 до 4, определяя крутизну параболы. Но, как выяснил Файгенбаум, вид функции не имел значения. Действительно важным оказалось наличие у нее выпуклости. Поведение существенно зависело и от того, насколько парабола крута — от степени нелинейности, которую Роберт Мэй назвал «взлетами и падениями» (т. е. от способности живущей в естественных условиях популяции к увеличению и снижению числа составляющих ее особей). Слишком низкая парабола означала вымирание: любое начальное значение фактически приводило к нулю. Увеличение степени крутизны порождало устойчивое равновесие — ситуацию, понятную для эколога, который придерживается традиционных взглядов. Точка равновесия, находясь на любой траектории, являлась одномерным аттрактором. После определенной точки начинались разветвления, порождающие колеблющуюся популяцию с двумя периодами. Затем опять происходило удвоение периода, и еще, и еще раз, так что в конце концов траектория «успокаивалась» (внизу справа). Когда Файгенбаум попытался создать новую теорию, подобные изображения послужили ему отправной точкой. Он начал размышлять на языке итераций: функции функций, функции функций от функций и т. д.; схемы с двумя «горбами», потом с четырьмя…
Файгенбаум быстро выяснил, что компьютеры Лос-Аламоса мало подходят для вычислений, которые он задумал. Несмотря на огромные ресурсы лаборатории, гораздо более обширные, нежели в большинстве университетов, лишь несколько терминалов могли воспроизводить графики и изображения, да и те находились в отделе вооружения. Файгенбаум намеревался наносить определенные числа в виде точек на своеобразную карту и вынужден был прибегнуть к наиболее простому из возможных методов: он использовал длинные рулоны распечаток, где просматривались линии, составленные из чередующихся пробелов, звездочек и знаков сложения. Официальная политика лаборатории заключалась в том, что один большой компьютер лучше нескольких менее мощных. Это было следствие курса «одна проблема — одно решение». Маломощные машины отбивали всякую охоту к исследованиям; к тому же, приобретая компьютер, каждый отдел должен был следовать обязательным указаниям сверху и давать в этом отчет. Лишь гораздо позже, благодаря финансовой помощи теоретического отдела, Файгенбаум получил в личное пользование вычислительную машину стоимостью 20 000 долларов. Теперь он мог видоизменять свои уравнения и мелькавшие на экране картины, перестраивать их, играя на компьютере, словно на музыкальном инструменте. Но это было позже, а пока единственные терминалы, за которыми удавалось всерьез работать с графикой, находились в строго охраняемых зонах, как говорили в лаборатории — за забором. Файгенбауму приходилось использовать терминал, соединенный телефонными кабелями с центральным компьютером. Имея дело с таким устройством, оценить истинную мощность машины на другом конце кабеля весьма сложно, — даже решение простейших задач занимало целые минуты. Чтобы отредактировать лишь одну строчку программы, приходилось, нажав клавишу «Возврат», ждать под непрерывный гул терминала, пока центральный компьютер не обслужит других пользователей.
Вычисляя, Файгенбаум непрерывно размышлял. Какая еще неизвестная математика могла породить наблюдаемые им множественные масштабные модели? Он понял: нечто в этих функциях должно быть повторяющимся, самовоспроизводящимся. Поведением исследуемой системы руководило поведение другой, скрытой внутри нее. Волнистый контур, открывшийся ученому в миг озарения, кое-что прояснял в том, как масштаб одной функции мог быть подогнан в соответствие с другой функцией. Файгенбаум применил теорию групп перенормировки, прибегнув к масштабированию, чтобы избавиться от бесконечности и получить количественные оценки. Весной 1976 г. его жизнь обрела безумный ритм, какого он не знал прежде. Погрузившись в некий транс, Файгенбаум с каким-то неистовством писал программы, что-то черкал карандашом на бумаге и вновь программировал. Он даже не обращался за помощью в компьютерный отдел: это было бы равносильно отказу от собственного компьютера и замене его телефоном, а перестройка метода работы казалась весьма рискованной. Митчелл не прерывался более чем на пять минут, иначе компьютер автоматически отключил бы его линию. Все же временами машина подводила ученого, повергая его в состояние, близкое к шоку. Так, без перерыва, он работал больше двух месяцев. Его рабочий день длился двадцать два часа. Когда он ложился спать, напряжение не покидало его, поднимая ровно через сто двадцать минут и заставляя думать с того же места, где он остановился. Силы его поддерживал лишь кофе. (Даже в лучшие времена Файгенбаум существовал исключительно на полусырых бифштексах, кофе и красном вине. Друзья подшучивали, что он получает витамины из сигарет.)
Джеймс Глик, американский журналист и автор научно-популярных книг, исследует идею путешествий во времени и связанные с ней научные концепции и парадоксы. Он рассказывает, как она возникла и как развивалась — в науке и культуре — и как менялось само восприятие времени. Он показывает, что эта идея прочно вошла в современную культуру и присутствует и в современной физике, и в художественной литературе, и в искусстве. Книга будет интересна всем путешественникам во времени.На русском языке публикуется впервые.
Эта книга о жизни и работе нобелевского лауреата по физике Ричарда Фейнмана. Доступное описание физических вопросов и факты из жизни ученого делают рассказ интересным для всех, кто интересуется историей науки.
День 4 ноября 1922 года стал одним из величайших в истории мировой археологии. Именно тогда знаменитый египтолог Говард Картер и лорд Карнарвон, финансировавший раскопки, обнаружили гробницу фараона Тутанхамона, наполненную бесценными сокровищами Однако для членов экспедиции этот день стал началом кошмара. Люди, когда-либо спускавшиеся в усыпальницу, погибали один за другим. Газеты принялись публиковать невероятные материалы о древнем египетском демоне, мстящем археологам за осквернение гробницы…В своей увлекательной книге известные исследователи исторических аномалий Коллинз и Огилви-Геральд подробно изложили хронологию открытия гробницы Тутанхамона и связанных с этим загадочных событий Основываясь на письмах и статьях знаменитых археологов, а также воспоминаниях очевидцев, авторы задаются сенсационным вопросом: не могли ли Говард Картер и лорд Карнарвон обнаружить в гробнице Тутанхамона некую взрывоопасную тайну, способную в случае огласки перевернуть сложившиеся взгляды на библейскую и мировую историю? И не могла ли эта тайна стать для первооткрывателей усыпальницы реальным проклятием — осуществляемым не мстительными богами Египта, а наемными убийцами на службе влиятельных политических сил, которым могла помешать неудобная правда?
Земная цивилизация достигла критического порога, и потеря людьми интереса к космосу лишь вершина айсберга. Первые космические программы имели ясную цель, объявленную Циолковским: расселение человечества по Солнечной системе. Сейчас цель потеряна как для развития космонавтики, так и для человечества в целом. Оно должно сдать экзамен на разумность и обеспечить себе переход на новую ступень развития.(«Техника-молодежи», № 8/2004)
Азию мы называем Азией, а Антарктиду – Антарктидой. Вот Фарерские острова, но нам лучше на Канарские. Слова, известные со школы, звучат, будто музыка: Гренландия и Исландия, Миссури и Ориноко, Босфор и Дарданеллы. С чем и с кем связано то или иное географическое название – кто так назвал, когда и почему? Знать бы! И удивлять других: «Кстати, о Миссисипи…»Эта книга раскрывает многие историко-географические тайны. Рассказы о происхождении названий географических объектов часто оказываются посильнее детективных романов.
Настоящее пособие знакомит учителей физической культуры с нормами санитарно-гигиенического режима, мерами пожарной безопасности на уроках физкультуры. В нем представлены нормативные акты, формы документов, извлечения из методических указаний, правил и инструкций по охране труда, регламентирующие безопасность проведения физкультурно-оздоровительной, учебной и внеклассной работы в образовательных учреждениях; показан порядок и правила проведения инструктажей по мерам безопасности.Пособие предназначено для студентов, преподавателей, учителей физической культуры и школьников.
Эта книга о наших детях, о происшествиях и явлениях, связанных с ними и выходящих за рамки традиционного мировосприятия.Вас, уважаемый читатель, ждут встречи с героями невероятных историй, удивительными людьми, участниками и очевидцами феноменальных событий, необъяснимых с точки зрения логики и «приземленного» мышления.Также вы получите возможность побывать в гостях у известной духовной целительницы Зины Ивановны, побеседовать с ней, вместе проанализировать почерпнутую информацию. Эта необычная женщина будет комментировать те удивительные истории, которые рассказаны на этих страницах.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.