Хаос. Создание новой науки - [52]
Но как же все данные о сложнейшей системе могут быть представлены лишь в одной точке? Если система характеризуется двумя переменными, найти ответ не составляет труда, он напрямую вытекает из Евклидовой геометрии, преподаваемой в средней школе: одна из переменных располагается на горизонтальной оси x, а другая — на вертикальной оси y. Если же система представляет собой качающийся маятник, свободный от действия силы трения, то одна из переменных является его положением в пространстве, а другая — скоростью. Они непрерывно меняются, образуя линию из точек, которая изгибается петлей, вновь и вновь повторяющей саму себя. Та же система, но обладающая более высокой энергией, раскачивающаяся быстрее и дальше, образует в фазовом пространстве петлю, схожую с первой, но большую по размерам.
Впрочем, столкнувшись с одним из проявлений реальности — трением, система начинает претерпевать изменения. Чтобы описать поведение маятника, подверженного трению, не нужны уравнения движения: каждое его колебание фактически заканчивается на одном и том же месте, в центре, откуда начиналось движение, и скорость его в эти моменты равна нулю. Данная центральная фиксированная зона как бы «притягивает» колебания. Вместо того чтобы вечно чертить на графике петли, орбита маятника спиралью закручивается внутрь. Трение рассеивает энергию системы, что в фазовом пространстве выглядит как толчок к центру. Наблюдается движение из внешних зон с высокой энергией к внутренним зонам с низкой энергией. Аттрактор — простейший из возможных — подобен магниту величиной с булавочную головку, встроенному в лист резины.
Одним из преимуществ рассмотрения состояний системы как совокупности точек в пространстве является то, что в таком случае легче наблюдать происходящие изменения. Система, в которой переменные непрерывно увеличиваются и уменьшаются, превращается в движущуюся точку, словно муха, летающая по комнате. Если некоторые комбинации переменных никогда не возникают, ученый может просто предположить, что пределы комнаты ограничены и насекомое никогда туда не залетит. При периодическом поведении изучаемой системы, когда она снова и снова возвращается к одному и тому же состоянию, траектория полета мушки образует петлю, и насекомое минует одну и ту же точку в пространстве множество раз. Своеобразные портреты физических систем в фазовом пространстве демонстрировали образцы движения, которые были недоступны наблюдению иным способом. Так фотография природного ландшафта в инфракрасных лучах открывает те мелочи и детали, которые существуют вне досягаемости нашего восприятия. Ученый, взглянув на фазовую картину, мог, призвав на помощь воображение, уяснить сущность самой системы: петля здесь соответствует периодичности там, конкретный изгиб воплощает определенное изменение, а пустота говорит о физической невероятности.
Даже при наличии двух переменных изображения в фазовом пространстве могли еще многим удивить. Даже на мониторах настольных компьютеров можно было построить кое-какие из них, превращая уравнения в красочные траектории. Некоторые физики начали создавать серии движущихся картинок и снимать видеопленки, чтобы продемонстрировать их своим коллегам. Математики из Калифорнии публиковали книги, иллюстрированные множеством красно-сине-зеленых рисунков в стиле анимации, — «комиксы хаоса», как отзывались о них, не без яда, коллеги авторов. Но пара измерений не охватывала всего богатства систем, которые хотели изучать физики, и ученые стремились ввести больше двух переменных, что, естественно, требовало увеличения числа измерений. Каждый фрагмент динамической системы, способный к независимому перемещению, является уже новой переменной, воплощая иную «степень свободы», и для каждой такой степени требуется новое измерение в фазовом пространстве. Иначе нет уверенности, что одна-единственная точка содержит достаточно информации для описания состояния системы в каждый конкретный момент времени. Простые уравнения, изучавшиеся Робертом Мэем, являлись однопространственными. Они позволяли обойтись одним числом — значением температуры или численности популяции, которое определяло местоположение точки на прямой, располагавшейся в одном измерении. Развернутая система Лоренца, описывавшая конвекцию в жидкостях, имела три измерения, но не потому, что жидкость двигалась в трех пространственных измерениях, а потому, что для описания состояния жидкости в каждый момент времени требовалось три вполне определенных числа.
Даже топологу с самой развитой фантазией нелегко представить пространства, обладающее четырьмя, пятью и более измерениями. Однако сложные системы имеют множество независимых переменных, поэтому математикам пришлось смириться с тем, что множество степеней свободы требует фазового пространства, где бесконечно много измерений. Так ничем не ограниченная природа дает о себе знать в бурных струях водопада или в непредсказуемости человеческого мозга. Но кто сумеет справиться с буйным, необоримым чудищем турбулентности, которому присущи многообразие форм, неопределенное число «степеней свободы», бесконечное количество измерений?
Джеймс Глик, американский журналист и автор научно-популярных книг, исследует идею путешествий во времени и связанные с ней научные концепции и парадоксы. Он рассказывает, как она возникла и как развивалась — в науке и культуре — и как менялось само восприятие времени. Он показывает, что эта идея прочно вошла в современную культуру и присутствует и в современной физике, и в художественной литературе, и в искусстве. Книга будет интересна всем путешественникам во времени.На русском языке публикуется впервые.
Эта книга о жизни и работе нобелевского лауреата по физике Ричарда Фейнмана. Доступное описание физических вопросов и факты из жизни ученого делают рассказ интересным для всех, кто интересуется историей науки.
Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.
В издании изложены основные действия по оказанию помощи пострадавшим на воде. Дана характеристика видов утопления, способов выполнения искусственного дыхания, непрямого массажа сердца и мер по предупреждению несчастных случаев.Предназначено для широкого круга читателей, а также может быть использовано инструкторами, методистами, работающими с детьми и взрослыми в условиях, связанных с водной средой.
Обширные районы нынешнего шельфа Охотского, Берингова, Черного и многих других морей были еще шесть — десять тысяч лет назад сушей, на которой обитали люди. На шельфе же находятся и руины затонувших городов и поселений, ушедших под воду не только в эпоху античности и средневековья, но и в Новое время. Об этих реальных, а не гипотетических «атлантидах» и рассказывает заключительная книга трилогии, посвященной «новым атлантидам».
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.