Гюйгенс Волновая теория света. В погоне за лучом - [17]

Шрифт
Интервал

С Земли его кольцо иногда наблюдается сверху, иногда снизу. Между этими двумя периодами оно встает ребром, и тогда кажется, что оно исчезает.


Это требование было совершенно несправедливым как минимум по двум причинам. Во-первых, астрономы заметили Титан, когда Гюйгенс был еще ребенком, хотя и не поняли, что это небесное тело — спутник Сатурна. Следовательно, его удивительное открытие не было основано на мощности используемых инструментов. Во-вторых, по иронии судьбы, Гюйгенс разгадал тайну Сатурна в тот момент, когда кольца не были видны, то есть телескоп здесь совершенно ни при чем.

Тогда почему же ученый так им гордился? Гипотеза о наличии кольца основывалась на результатах астрономических наблюдений за последние 40 лет. Гюйгенсу пришлось отбросить многие из них — те, которые он справедливо считал ошибочными из-за плохого качества линз, хотя они были опубликованы более известными и опытными астрономами, чем он сам. И он решил завоевать авторитет, так ему необходимый, утвердив превосходство своего телескопа, которое подтверждалось и открытием Титана. Однако стратегия не принесла желаемого результата. Сомнения по поводу существования кольца основывались не на научных доводах, а на самолюбии. Критические замечания в основном звучали со стороны астрономов и ремесленников, репутация и заработки которых зависели от качества их инструментов. Это были, в частности, Дивини, считавшийся лучшим производителем телескопов в Европе, и Ян Гевелий. Дивини поставил под вопрос наблюдения Гюйгенса, приписав их оптическим дефектам. Он даже заметил, что голландскому ученому следовало бы приобрести один из его инструментов. Гевелий же был просто в ярости: «Видимо, Гюйгенс считает, что я и все остальные неспособны отличить сферу от эллипса, и что то [что я увидел] было плодом моего воображения... или что мне это приснилось? Да нет же, клянусь Геркулесом!»

Гюйгенс открыл правильную геометрическую форму кольца, но не его структуру. Он был уверен, что кольцо представляло собой твердый диск, непрерывный и довольно толстый. В противном случае как оно могло отбрасывать тень на поверхность планеты? До конца своих дней ученый считал, что диск имел почти 4000 км в толщину. Когда его спросили, каким образом ребро такого большого кольца могло исчезать, будучи освещено прямыми лучами Солнца, Гюйгенс ответил, что оно состояло из материала, не отражающего свет. Причину этой невидимости открыл Кристофер Рен: диск был настолько тонким, «что его толщины не хватало для того, чтобы увидеть его с Земли, а потому корону [кольцо] можно было принять за поверхность планеты».


СУПЕРТЕЛЕСКОПЫ

Большие телескопы не являются изобретением XX века. Чем меньше изгиб сферической линзы, тем слабее проявляется эффект хроматической аберрации. Как мы уже видели, чем меньше изгиб, тем меньше отклоняются лучи света и тем больше фокусное расстояние линзы. Однако большое фокусное расстояние требовало от производителей телескопа как можно дальше разнести объектив и окуляр. Так началась гонка, связанная с созданием все более длинных телескопов.

Однако прочность и маневренность труб представляли некоторые ограничения. Установленные всего на одну опору, телескопы изгибались, ломались, а также смещались при ветре. Гюйгенс разрубил гордиев узел, просто убрав из конструкции трубу. На рисунке мы видим один из его воздушных телескопов, в которых объектив и окуляр вставлены в два коротких металлических цилиндра, соединенных натянутой веревкой. С ее помощью можно регулировать и высоту столба, на котором располагается объектив. Опора, поддерживающая линзу сверху, не двигается за счет противовеса. Ночью Гюйгенс пользовался лампой, чтобы определить положение объектива, ориентируясь по отражению света в стекле.

Рисунок одного из воздушных телескопов Гюйгенса.


Следуя примеру Галилея, которого Гюйгенс беспредельно уважал, он посвятил свою Systema Satumium выдающемуся члену семьи Медичи — Леопольду, сыну Козимо II. Он ожидал чего угодно, но только не того, что герцог оставит этот жест без ответа — а именно это и случилось. Леопольд невольно оскорбил ученого не потому, что был плохо воспитан, а из-за того, что Гюйгенс поставил его в затруднительное положение. Satumium, как и «Звездный вестник», написанный раньше Галилеем, относился к жанру гелиоцентрического трактата, который не очень-то жаловали в Ватикане. Двор Леопольда располагался во Флоренции — городе, куда более близком к Риму, чем особняк Гюйгенса в Гааге. Хотя Церковь и не заняла никакой официальной позиции по поводу открытия кольца Сатурна, влиятельный иезуит Оноре Фабри предложил альтернативное решение вопроса в рамках геоцентрической теории. Он мог рассчитывать на поддержку Эустакио Дивини, обиженного на Гюйгенса за то, что тот отрицал совершенство его телескопов. Вместе они написали трактат, в котором труд голландского ученого был полностью переработан. Назывался он Brevis annotatio in Systerna Satumium («Краткая аннотация к «Системе Сатурна») и был также посвящен Леопольду Медичи. Как и следовало ожидать, теория Фабри носила консервативный характер, исходя из нее спутников было несколько. В ее первой версии у Сатурна было четыре спутника: два маленьких и не светящихся, два среднего размера и отражающих свет. Они вращались не вокруг планеты, а вокруг двух точек, расположенных за ней. Чтобы объяснить обнародованные результаты наблюдений, авторы прибегали к таким изощренным операциям с орбитами, какие Птолемею и не снились. Гюйгенс выдвинул несколько возражений, в ответ на это Фабри добавил еще два спутника.


Еще от автора Давид Бланко Ласерна
Эйнштейн. Теория относительности. Пространство – это вопрос времени

Альберт Эйнштейн – один из самых известных людей прошлого века. Отгремело эхо той бурной эпохи, в которую ученому выпало жить и творить, эхо мировых войн и ядерных атак, но его гениальные открытия и сегодня не потеряли остроты: закон взаимосвязи массы и энергии, выраженный знаменитой формулой Е = mc² , поистине пионерская квантовая теория и особенно теория относительности, навсегда изменившая наши, до того столь прочные, представления о времени и пространстве.


На волне Вселенной. Шрёдингер. Квантовые парадоксы

Эрвин Шрёдингер сформулировал знаменитый мысленный эксперимент, чтобы продемонстрировать абсурдность физической интерпретации квантовой теории, за которую выступали такие его современники, как Нильс Бор и Вернер Гейзенберг. Кот Шрёдингера, находящийся между жизнью и смертью, ждет наблюдателя, который решит его судьбу. Этот яркий образ сразу стал символом квантовой механики, которая противоречит интуиции точно так же, как не поддается осмыслению и ситуация с котом, одновременно живым и мертвым. Шрёдингер проиграл эту битву, но его имя навсегда внесено золотыми буквами в историю науки благодаря волновому уравнению — главному инструменту для описания физического мира в атомном масштабе.Прим.


Рекомендуем почитать
Тудор Аргези

21 мая 1980 года исполняется 100 лет со дня рождения замечательного румынского поэта, прозаика, публициста Тудора Аргези. По решению ЮНЕСКО эта дата будет широко отмечена. Писатель Феодосий Видрашку знакомит читателя с жизнью и творчеством славного сына Румынии.


Петру Гроза

В этой книге рассказывается о жизни и деятельности виднейшего борца за свободную демократическую Румынию доктора Петру Грозы. Крупный помещик, владелец огромного состояния, широко образованный человек, доктор Петру Гроза в зрелом возрасте порывает с реакционным режимом буржуазной Румынии, отказывается от своего богатства и возглавляет крупнейшую крестьянскую организацию «Фронт земледельцев». В тесном союзе с коммунистами он боролся против фашистского режима в Румынии, возглавил первое в истории страны демократическое правительство.


Мир открывается настежь

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Правда обо мне. Мои секреты красоты

Лина Кавальери (1874-1944) – божественная итальянка, каноническая красавица и блистательная оперная певица, знаменитая звезда Прекрасной эпохи, ее называли «самой красивой женщиной в мире». Книга состоит из двух частей. Первая часть – это мемуары оперной дивы, где она попыталась рассказать «правду о себе». Во второй части собраны старинные рецепты натуральных средств по уходу за внешностью, которые она использовала в своем парижском салоне красоты, и ее простые, безопасные и эффективные рекомендации по сохранению молодости и привлекательности. На русском языке издается впервые. В формате PDF A4 сохранен издательский макет книги.


Джованна I. Пути провидения

Повествование описывает жизнь Джованны I, которая в течение полувека поддерживала благосостояние и стабильность королевства Неаполя. Сие повествование является продуктом скрупулезного исследования документов, заметок, писем 13-15 веков, гарантирующих подлинность исторических событий и описываемых в них мельчайших подробностей, дабы имя мудрой королевы Неаполя вошло в историю так, как оно того и заслуживает. Книга является историко-приключенческим романом, но кроме описания захватывающих событий, присущих этому жанру, можно найти элементы философии, детектива, мистики, приправленные тонким юмором автора, оживляющим историческую аккуратность и расширяющим круг потенциальных читателей. В формате PDF A4 сохранен издательский макет.


Верные до конца

В этой книге рассказано о некоторых первых агентах «Искры», их жизни и деятельности до той поры, пока газетой руководил В. И. Ленин. После выхода № 52 «Искра» перестала быть ленинской, ею завладели меньшевики. Твердые искровцы-ленинцы сложили с себя полномочия агентов. Им стало не по пути с оппортунистической газетой. Они остались верными до конца идеям ленинской «Искры».


Самый сокровенный секрет материи. Мария Кюри. Радиоактивность и элементы

Мария Кюри — первая женщина в мире, получившая Нобелевскую премию. Вместе с мужем, Пьером Кюри, она открыла радиоактивность, что стало началом ее блистательной научной карьеры, кульминацией которой было появление в периодической системе Менделеева двух новых элементов — радия и полония. Мария была неутомимой труженицей, и преждевременная смерть Пьера не смогла погасить в ней страсть к науке. Несмотря на то что исследования серьезно вредили здоровью женщины, она не прерывала работу в лаборатории, а когда разразилась Первая мировая война, смогла поставить свои достижения на службу больным и раненым.


Поистине светлая идея. Эдисон. Электрическое освещение

Томас Альва Эдисон — один из тех людей, кто внес наибольший вклад в тот облик мира, каким мы видим его сегодня. Этот американский изобретатель, самый плодовитый в XX веке, запатентовал более тысячи изобретений, которые еще при жизни сделали его легендарным. Он участвовал в создании фонографа, телеграфа, телефона и первых аппаратов, запечатлевающих движение, — предшественников кинематографа. Однако нет никаких сомнений в том, что его главное достижение — это электрическое освещение, пришедшее во все уголки планеты с созданием лампы накаливания, а также разработка первой электростанции.


Наука высокого напряжения. Фарадей. Электромагнитная индукция

Майкл Фарадей родился в XVIII веке в бедной английской семье, и ничто не предвещало того, что именно он воплотит в жизнь мечту об освещенном и движимом электроэнергией мире. Этот человек был, вероятно, величайшим из когда-либо живших гениев экспериментальной физики и химии. Его любопытство и упорство позволили раскрыть множество тайн электричества и магнетизма, а также глубинную связь этих двух явлений. Фарадей изобрел электродвигатель и динамо-машину — два устройства, революционно изменившие промышленность, а также сделал другие фундаментальные открытия.


Тайна за тремя стенами. Пифагор. Теорема Пифагора

Пифагор Самосский — одна из самых удивительных фигур в истории идей. Его картина гармоничного и управляемого числами мира — сплав научного и мистического мировоззрения — оказала глубочайшее влияние на всю западную культуру. Пифагор был вождем политической и религиозной секты (первой группы такого рода, о которой нам известно), имевшей огромный вес в разных регионах Греции. Ему приписывается одно из важнейших открытий древности: равенство суммы квадратов катетов и квадрата гипотенузы в прямоугольном треугольнике.