Голографическая Вселенная - [14]

Шрифт
Интервал

В 1935 году Эйнштейн со своими коллегами, Борисом Подольским и Натаном Розеном, опубликовал ставшую впоследствии знаменитой статью под названием «Может ли квантово-механическое описание физической реальности считаться законченным?». В ней авторы объясняли, почему существование таких пар частиц могло служить доказательством ошибки Бора. Они говорили, что две такие частицы, скажем, два фотона, излучаемые с распадом позитрона, могли бы распространяться на значительные расстояния[12]. Затем частицы перехватываются, а их углы поляризации измеряются. Если углы поляризации измеряются в один и тот же момент и оказываются идентичными, как подсказывает квантовая физика, и если Бор прав и такие свойства, как поляризация, не существуют, пока не наблюдаются и не измеряются, то это означает, что каким-то образом два фотона мгновенно устанавливают один и тот же угол поляризации. Проблема состоит в том, что, согласно специальной теории относительности Эйнштейна, ничто не может двигаться быстрее скорости света, тем более двигаться мгновенно, поскольку это приведет к разрушению барьера времени и откроет дверь различного рода неприемлемым парадоксам. Эйнштейн и его коллеги были уверены, что ни одно из «разумных определений реальности» не может допустить такую связь, превышающую скорость света, и потому Бор ошибался [3]. Их аргументирование известно сейчас как парадокс Эйнштейна-Подольского-Розена, или EPR-парадокс.

После выхода статьи Эйнштейна Бор остался невозмутим. Вместо того чтобы допустить скорость связи фотонов, превышающую скорость света, он предложил другое объяснение. Если элементарные частицы не существуют, пока не наблюдаются, тогда никто не может представлять их в виде независимо существующих «объектов». То есть Эйнштейн основывал свое возражение на ошибочном предположении о независимом существовании пары частиц. На самом деле они были частью неделимой системы, и было бы немыслимо думать о них по-другому.

Со временем большинство физиков приняло сторону Бора и согласилось, что его подход верен. Триумфу Бора способствовали также успешные предсказания его теории относительно поведения частиц, и физики сразу приняли его версию. В то время, когда Эйнштейн и его коллеги выдвинули свой пример о паре частиц, по техническим и другим причинам постановка такого эксперимента была затруднена. Этот эксперимент так и остался в воображении. Хотя Бор привел свой аргумент для того, чтобы противостоять атаке Эйнштейна на квантовую механику, как мы позже увидим, взгляды Бора на неделимость внутриатомных систем имели большое значение для постижения природы реальности. Ирония заключается в том, что провидческие теории Бора были в большой степени проигнорированы, и сулящая революционное открытие идея взаимосвязи субъекта и объекта была отложена в долгий ящик.

Живое море электронов

В начале своей карьеры Бом также разделял позицию Бора, но недоумевал, почему Бор и его коллеги так мало внимания уделяют вопросам взаимосвязи в микромире. После окончания Государственного колледжа в штате Пенсильвания он поступил в Калифорнийский университет в Беркли и до получения докторской степени в 1943 году работал в Лоренсовской радиационной лаборатории (Lawrence Berkeley Radiation Laboratory). Там он встретился с еще одним поразительным примером квантовой взаимосвязи.

В лаборатории Бом начал проводить серьезные исследования в области плазмы. Плазма — это газ, состоящий из большого количества электронов и положительно заряженных ионов и атомов. К своему удивлению, Бом обнаружил, что, будучи в плазме, электроны перестают вести себя как отдельные частицы и становятся частью коллективного целого. В то время как индивидуальные движения электронов имели случайный характер, большое количество электронов приводило к эффектам, носившим удивительно организованный характер. Подобно некой амебе, плазма постоянно регенерировала сама себя и окружала оболочкой все инородные тела — она вела себя аналогично живому организму, когда в его клетку попадает инородное вещество [4]. Бом был настолько поражен органическими свойствами плазмы, что часто представлял электронное море как «живое существо» [5].

В 1947 году Бом принял предложение занять должность ассистента в Принстонском университете (что было признанием его заслуг) и продолжил начатое еще в Беркли исследование поведения электронов в металлах. Снова и снова он обнаруживал, что кажущееся хаотичным движение индивидуальных электронов-частиц способно производить в совокупности высокоорганизованное движение. Подобно плазме, которую он изучал в Беркли, он столкнулся с ситуацией, где не только две частицы согласовывают между собой свое поведение, — он увидел целый океан частиц, каждая из которых как будто знала, что делают остальные триллионы частиц. Бом назвал такие коллективные движения частиц плазмонами, а их открытие принесло ему славу выдающегося физика.

Разочарование Бома

Чувствуя важность взаимосвязи микрочастиц и не разделяя некоторые из укоренившихся взглядов в физике, Бом стал все более критически относиться к боровской интерпретации квантовой теории. После трех лет преподавания этого предмета в Принстоне он решил написать учебник, который мог бы помочь ему глубже разобраться в предмете. После написания книги он понял, что по-прежнему не удовлетворен изложением квантовой физики. Отослав экземпляры книги Бору и Эйнштейну, от стал ждать их отзыва. От Бора ответа не последовало, однако Эйнштейн написал, что, поскольку они оба работают в Принстоне, можно встретиться и обсудить книгу. На первой встрече, которая ознаменовала собой начало их живой дискуссии в течение шести месяцев, Эйнштейн восторженно отозвался о работе Бома, заявив, что никогда ранее не видел, чтобы квантовую теорию излагали с такой ясностью. Тем не менее он признал, что, как и у Бома, у него есть много оснований не соглашаться с положениями теории.


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Высшая духовная школа. Проблемы и реформы. Вторая половина XIX в.

Монография посвящена истории высших учебных заведений Русской Православной Церкви – Санкт-Петербургской, Московской, Киевской и Казанской духовных академий – в один из важных и сложных периодов их развития, во второй половине XIX в. В работе исследованы организационное устройство духовных академий, их отношения с высшей и епархиальной церковной властью; состав, положение и деятельность профессорско-преподавательских и студенческих корпораций; основные направления деятельности духовных академий. Особое внимание уделено анализу учебной и научной деятельности академий, проблем, возникающих в этой деятельности, и попыток их решения.


Школьное образование и политика британских партий (1870–1997 гг.)

В монографии рассматривается проблема школьного образования в ходе реформ Консервативной, Либеральной и Лейбористской партий с 1870 г. по 1997 г. Охарактеризованы и систематизированы разные типы государственных школ, частных заведений и церковных школ разных конфессий. Повышенное внимание уделено инициативе британских церквей, и в первую очередь государственной Церкви Англии, создавшей основу начального обучения в Англии в XVIII в. и опекавшей специальные заведения для детей с ограниченными возможностями, а также благотворительные женские школы.


Затаенное имя - Тайнопись в 'Слове о полку Игореве'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Крестоносцы, Они же татары

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электрошокеры - осторожно, злая собака!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.