Голая статистика. Самая интересная книга о самой скучной науке - [92]
Значимость. Является ли наблюдаемый нами результат заблуждением, обусловленным нерепрезентативной выборкой данных, или он отражает реально существующую связь, которая, скорее всего, будет присуща всей соответствующей совокупности? Это тот же самый фундаментальный вопрос, на который мы пытаемся ответить на протяжении нескольких последних глав. Можно ли ожидать в контексте роста и веса, что мы будем наблюдать аналогичную положительную ассоциацию в других выборках, которые являются репрезентативными по отношению к данной совокупности? Чтобы ответить на этот вопрос, используем уже знакомые вам базовые инструменты статистического вывода. Наш коэффициент регрессии основывается на наблюдаемой зависимости между ростом и весом для определенной выборки данных. Если бы мы тестировали более крупную выборку, то почти наверняка выявили бы несколько иную зависимость между ростом и весом и, следовательно, другой коэффициент регрессии. Зависимость между ростом и весом, наблюдаемая в данных, полученных британским правительством (напоминаю, что они касаются государственных служащих Британии), безусловно, будет отличаться от зависимости между ростом и весом для участников исследования Americans’ Changing Lives. Однако из центральной предельной теоремы следует, что среднее значение для большой, надлежащим образом сформированной выборки, как правило, не будет существенно отклоняться от среднего значения для генеральной совокупности. Аналогично мы можем предположить, что наблюдаемая зависимость между переменными, такими как рост и вес, тоже не будет значительно разниться от выборки к выборке, если, конечно, эти выборки будут достаточно крупными и надлежащим образом сформированными из одной и той же совокупности.
Вы должны понимать это на интуитивном уровне. Весьма маловероятно (хотя в принципе возможно), что, обнаружив зависимость между каждым дополнительным дюймом роста и дополнительными 4,5 фунта веса участников исследования Americans’ Changing Lives, мы в то же время не выявили бы никакой зависимости между ростом и весом в какой-то другой репрезентативной выборке, состоящей из 3000 взрослых американцев.
Это должно дать вам первый намек на то, как мы будем проверять, являются ли результаты нашей регрессии статистически значимыми. Для коэффициента регрессии, как и для опросов общественного мнения и других форм статистического вывода, мы можем вычислить стандартную ошибку, которая представляет собой показатель вероятного разброса, наблюдаемый нами в значениях этого коэффициента в случае, если бы мы выполнили регрессионный анализ по нескольким выборкам, сформированным из одной и той же совокупности. Если бы мы измерили рост и вес в какой-то другой выборке, состоящей из 3000 взрослых американцев, то последующий анализ мог бы показать, что каждый дополнительный дюйм роста ассоциируется с дополнительными 4,3 фунта веса. Если бы мы проделали те же самые действия в отношении еще одной выборки из 3000 взрослых американцев, то могли бы обнаружить, что каждый дополнительный дюйм роста связан с дополнительными 5,2 фунта веса. И здесь на помощь снова приходит нормальное распределение. При использовании больших выборок данных можно предположить, что полученные нами разные коэффициенты регрессии будут распределены по нормальному закону вблизи «истинной» зависимости между ростом и весом в совокупности взрослых американцев. В таком предположении мы можем вычислить стандартную ошибку для коэффициента регрессии, что позволит составить представление о том, насколько большой разброс коэффициентов регрессии следует ожидать от выборки к выборке. Я не буду здесь вдаваться в подробное объяснение формулы для вычисления стандартной ошибки, поскольку для этого пришлось бы прибегнуть к множеству математических выкладок и к тому же все базовые статистические пакеты программного обеспечения вычислят ее за вас.
Однако должен предупредить, что при использовании небольшой выборки данных – например группы из 20 взрослых американцев вместо группы из более чем 3000 участников исследования Americans’ Changing Lives – нормальное распределение на помощь нам уже не придет. В частности, если мы будем то и дело выполнять регрессионный анализ в отношении разных малых выборок, то уже не сможем исходить из того, что полученные нами разные коэффициенты регрессии будут распределены по нормальному закону вблизи «истинной» зависимости между ростом и весом в совокупности взрослых американцев. Вместо этого они будут распределены вблизи «истинной» зависимости между ростом и весом в совокупности взрослых американцев по закону, известному как t-распределение, или распределение Стьюдента. (Вообще говоря, t-распределение характеризуется большей степенью разброса, чем нормальное распределение, и, следовательно, имеет «более толстые хвосты».) Все прочее остается неизменным; любые базовые статистические пакеты программного обеспечения без проблем справятся с дополнительной сложностью, связанной с использованием t-распределений. Поэтому более подробное объяснение t-распределения приведено в
Это книга о деньгах — о том, как бумажки, лежащие в вашем кошельке, приобрели большую ценность, и как соглашение, обусловившее обмен этих, казалось бы, бесполезных бумажек на реальные товары, стало фундаментальной концепцией современной экономики.
Книга ученого, преподавателя и журналиста Чарлза Уилэна посвящена тому, что окружает нас всегда и повсюду, — экономике. Но Уилэн старается говорить с читателем об этом трудном и «унылом» предмете на понятном языке — без туманных определений, сложных графиков и запутанных уравнений, «разоблачая» таким образом экономику, используя многочисленные примеры из нашей повседневной жизни, автор лишает основные экономические понятия их таинственности и дает ответы на многие вопросы.Книга будет полезна руководителям предприятий, менеджерам, преподавателям, студентам высших учебных заведений и всем интересующимся экономическими проблемами.
Блестящий придворный и знаток людей Ларошфуко говорил в свое время: «Свет чаще награждает видимость достоинств, нежели сами достоинства». Но как же действовать подлинно талантливому человеку, которого не замечают на фоне более уверенных соперников? Джек Нэшер, профессор менеджмента и всемирно известный эксперт в области деловых коммуникаций, призывает освоить стратегии общения, свойственные профессионалу, который впечатляет своей компетентностью и привык греться в лучах славы. Читателю предлагается «пересоздать» себя: усовершенствовать внешний облик, подобрать уместный гардероб, грамотно организовать рабочее пространство, заучить поведение, характерное для лидеров, и бесстрашно выступать с самопрезентацией перед коллегами и партнерами.
Эта книга – продолжение первой части, вышедшей в 2015 г. Во второй части анализируются 100 дел ФАС России против малого и среднего бизнеса за 2016—2018 гг. Несмотря на принятие 3.07.2016 закона об «иммунитетах» для малого бизнеса от антимонопольного контроля, подходы ФАС изменились незначительно. По основным объектом преследования остаются н самые крупные игроки на рынке. В книге предлагается реформа антимонопольного регулирования, предусматривающая полное прекращение преследования МСП.
Нейробиолог Шрини Пиллэй, опираясь на последние исследования мозга, примеры из спорта и бизнеса и истории из своей психологической практики, бросает вызов традиционному подходу к продуктивности. Вместо внимания и сосредоточенности он предлагает специально «расфокусироваться», чтобы стимулировать креативность, развить память, увеличить продуктивность и двигаться к целям. На русском языке публикуется впервые.
Сразу после выхода в свет эта книга заняла первые места на Amazon среди книг по маркетингу и клиентскому сервису. Формирование источника регулярной выручки для компании – важная задача каждого предпринимателя. Благодаря разнообразию разновидностей бизнес-моделей на основе подписки для каждой отрасли можно найти подходящий вариант. Подписчики в любом случае намного ценнее для компании, чем обычные покупатели. Эта книга для всех, кто хочет построить бизнес-модель, приносящую регулярную прибыль. На русском языке публикуется впервые.
В бизнесе да и в жизни уже не так важно, что именно вы делаете. Гораздо важнее то, как вы это делаете. Дов Сайдман, основатель и CEO компании LRN, на страницах своей книги убедительно доказывает: моральные «факторы», прежде считавшиеся «факультативными», определяют сегодня ваш успех. Только ориентируясь на нравственные ценности, выстраивая отношения на основании доверия и заботясь о собственной репутации, вы сможете обойти конкурентов и преуспеть в бизнесе и в жизни. Эта книга будет полезна владельцам компаний, руководителям и менеджерам, которые заботятся не только о прибыли, но и о том, какое наследство они оставят своим детям.
Инновации являются важнейшим фактором роста. Сегодня, более чем когда-либо, компании должны внедрять инновации, чтобы выжить. Но успешные инновации – это очень непростая задача. Авторы – партнеры всемирно известной консалтинговой компании Simon-Kucher & Partners Strategy & Marketing Consultants знают о чем говорят. Георг Таке – ее генеральный директор, а Мадхаван Рамануджам – партнер в Сан-Франциско. Simon-Kucher & Partners – глобальная консалтинговая компания, насчитывающая 900 профессионалов в 33 офисах по всему миру.