Геометрия, динамика, вселенная - [45]

Шрифт
Интервал

В процессе эволюции Метагалактика при t| ≈ 10**6 лет

u существует эра нейтрального водорода, когда формируются галактики, поэтому эта эра играет исключительно важную роль. Однако в метагалактике с утяжеленным электроном почти все вещество в соответствии с реакцией (65) превратилось бы в нейтроны и нейтрино. Это означает, что в таком мире существовали бы исключительно нейтронные звезды и бесмассовые нейтральные частицы. Мир кардинально изменил бы свой лик. Этот факт мы и называем неустойчивостью структуры Метагалактики (в данном случае относительно значения массы m|).

Далее следует задаться вопросом: велико или мало изменение значения массы m| в 2.5 раза? В физике подобная абстрактная постановка вопроса бессодержательна. Физический смысл имеют лишь относительные величины: велико или мало относительно некоторого эталона. Для значения массы m| мы обладаем таким эталоном. На ускорителях надежно измерено распределение примерно 300 элементарных частиц по их массам.

≡=РИС. 9

На рис. 9 представлено распределение dN / d log (m / m|)

p элементарных частиц по массам. Поскольку разброс масс превышает четыре порядка, распределение представлено в логарифмическом масштабе. Из рисунка можно сразу же сделать два вывода. Из спектра масс элементарных частиц выпадают две

± 0 частицы: электрон в сторону малых масс и W|| (Z|) — бозон в

± 0 сторону больших. Выброс, связанный с W|| (Z|) — бозоном, мы рассмотрим далее, а здесь сосредоточим внимание на исключительной малости массы электрона m|. Отношение

e m| / m| ~ 1 / 2000 (m| — масса протона, равная примерно e p p средней массе элементарных частиц). Для самой легкой после электрона частицы — мюона это соотношение m| / m| ~ 1 / 10.

ю p Именно с этими цифрами и следует сравнивать гипотетическое увеличение массы m| в 2.5 раза. И в этом случае отношение m| / m| ~ 1 / 800, т. е. останется чрезвычайно малым. В e p спектре масс элементарных частиц при практически небольшом (в 2.5 раза) увеличении массы m| ничего не изменится, а

e физическая картина мира изменится катастрофически.

Таким образом, исключительная малость массы m|

e сравнительно с массами других частиц и катастрофа в структуре мироздания вследствие гипотетического увеличения m| свидетельствуют о неустойчивости структуры Метагалактики e относительно значения m| и о флюктуативности (большом

e отклонении) фундаментальной постоянной m| в распределении

e подобных величин (в данном случае масс элементарных частиц).

Аналогичные примеры неустойчивости структуры Метагалактики относительно численного значения фундаментальных констант можно существенно умножить. Мы здесь ограничимся ссылкой на уже упоминавшуюся книгу автора, где подобная аргументация приводится подробно. В пределах приведенных интервалов структура Метагалактики не изменяется. Вне этих интервалов одно или несколько основных устойчивых связанных состояний должны отсутствовать.

Ниже в таблице помещены данные о всех постоянных, которые, по нашему мнению, можно считать истинно фундаментальными в том смысле, что остальные можно считать истинно фундаментальными в том смысле, что остальные константы, которые обычно приводятся в таблицах так называемых «фундаментальных постоянных», как правило, выражаются через постоянные, представленные в нашей таблице. Например, характеристики атома водорода, звезд, галактик и даже Метагалактики можно представить через величины, помещенные в таблице (m|, m| — соответственно массы нейтрона

N p и протона, ALPHA|, ALPHA|, ALPHA|, ALPHA| — безразмерные

e s w g константы электромагнитного, сильного, слабого и гравитационного взаимодействий, f|, f| — максимальное и

+ минимальное значения факторов, на которые нужно умножить данную константу, чтобы сохранились все основные устойчивые связанные состояния).

f| Константа f| — +

? m| 2.5

e

0.4 m| — m| 1.6

N p

0.8 ALPHA| 1.6

e

0.9 ALPHA| 1.1

s

0.1 ALPHA| 10

w

? ALPHA| 10**4

g

1 N 1

Следует сделать несколько пояснений к таблице.

1. Отсутствует предел уменьшения значений m| и ALPHA|.

e g Однако представляется, что сама необыкновенная малость обеих величин (m| сравнительно с m| и ALPHA| сравнительно с

e p g другими константами ALPHA) ограничивает дальнейшее уменьшение этих величин.

2. Невозможность уменьшения величины размерности N (f| = 1) есть гипотеза, несколько выходящая за пределы принципа целесообразности. Как отмечалось выше, при N = 1, 2 устойчивость связанных состояний возрастает. Однако при N<3 резко уменьшаются возможности реализации сложных геометрических, а следовательно, и физических структур. Почти все реальные основные связанные состояния имеют трехмерную структуру. Уменьшение размерности приводит не только к радикальному изменению строения мира, но и к его значительному упрощению. Едва ли в таком простом пространстве возможно и образование сложных органических структур (антропный принцип, о котором речь пойдет далее). Отметим также, что в рамках идей общей теории относительности при N = 1, 2 отсутствует гравитационное притяжение.

3. В таблице отсутствуют две постоянные, которые безусловно следует отнести к разряду фундаментальных: скорость света c и постоянная планка HP. Однако эти постоянные входят в выражения для безразмерных постоянных ALPHA, поэтому таблица в известном смысле отражает пределы их изменения. Однако, на наш взгляд, ситуация с этими постоянными еще сложнее и интереснее. Константы c и HP определяют две фундаментальные теории: квантовую механику и теорию относительности, в то время как значения m и ALPHA характеризуют общее поведение определенных конкретных систем. В этом смысле постоянные c и HP более «фундаментальные», чем остальные постоянные, приведенные в таблице.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.