Геометрия, динамика, вселенная - [44]
Перейдем далее к изложению его идей.
Рассмотрим устойчивость системы, связанной в N-мерном евклидовом пространстве дальнодействующими силами и состоящей из двух тел. Для простоты буем полагать, что одно тело неподвижно, а движется лишь второе. Это означает, что константы взаимодействия первого тела (например, масса) существенно превышают константы взаимодействия второго и первое тело можно полагать неподвижным. В таком случае полная потенциальная энергия U| системы в N-мерном
N пространстве определяется выражением
— C M**2 U| = —---- + —------. (64) N r**(N-2) 2 * m * r**2
В этом соотношении C — константа взаимодействия, r расстояние между двумя телами, член C/r**(N-2) потенциальная энергия, соответствующая статическому взаимодействию. Этот член — обобщение законов Кулона и Ньютона для евклидового пространства с произвольной целочисленной размерностью (см. связь этих законов с евклидовой геометрией в разд.3 гл.2), M — момент количества движения, m — масса движущегося тела, член M**2 / 2mr**2 центробежная энергия системы.
Из теории устойчивости следует, что система может находиться в устойчивом состоянии, если энергия U| имеет
N минимум при r ≠ 0 или r ≠ ∞.
Мы приведем окончательные результаты исследования выражения (64) на экстремум при различных значениях N. Оказывается, что:
при N > 4 минимум существует лишь при r=0, это соответствует падению легкого тела на тяжелое;
при N = 4 минимум отсутствует;
при N = 2, 3 возможны минимумы при конечном значении r;
при N = 1 система абсолютно устойчива, т. е. всегда связана (эта особенность отражает отмеченный ранее факт (см. разд.10 гл.2), что невылетание кварков эффективно определяется одномерной геометрией).
Таким образом, устойчивые связанные состояния, определяемые дальнодействующими силами, могут существовать лишь в пространствах с размерностью N ≤ 3.
Эренфест доказал это положение в рамках классической динамики и боровской модели атома. В дальнейшем (Ф.Тангерлини, Л.Э.Гуревич, В.М.Мостепаненко) аналогичное доказательство было проведено в рамках квантовой механики.
Таким образом, в многомерных евклидовых пространствах (N ≥ 4) не могут существовать аналоги атомов или планет.
Далее мы приведем аргументы, поясняющие причины того, что пространство Метагалактики имеет размерность N ≠ 1, 2. Здесь же мы подчеркнем важный вывод из анализа Эренфеста. В многомерных евклидовых пространствах невозможно существование устойчивых связанных состояний, обусловленных дальнодействующими силами. Необходимо отметить, что доказанный факт, изолированный от физической науки как целого, может рассматриваться скорее как курьез. Единичный факт, происхождение которого непонятно и может быть отнесено к компетенции счастливого случая, едва ли может служить убедительной основой для понимания столько глубокой характеристики, как размерность N. Вероятно, поэтому работа Эренфеста была прочно забыта, и о ней вспомнили совсем недавно в связи с развитием космологии и физики элементарных частиц, развитием, воплощенным в принцип целесообразности и антропный принцип, о которых речь пойдет далее. В рамках прогресса физики и космологии последних десятилетий можно оценить по достоинству идеи Эренфеста. Далее мы остановимся на принципе целесообразности, который является развитием основных идей Эренфеста.
Принцип целесообразности — это констатация факта, что существование основных устойчивых состояний обусловлено всей совокупностью физических закономерностей, включая размерность пространства и другие численные значения фундаментальных постоянных. Для существования основных устойчивых состояний физические закономерности не только достаточны, но и необходимы. Наш мир устроен очень хрупко, небольшое изменение его законов разрушает его элементы основные связанные устойчивые состояния, к которым можно отнести ядра атомов, атомы, звезды и галактики.
Здесь, разумеется, возникает вопрос: что означает слово «небольшое»? С первого взгляда может показаться, что в физике нет количественного критерия «величины» изменения закономерностей. Однако такая точка зрения совершенно неправильна. Оказывается, что в действительности такие критерии существуют и опираются на экспериментально хорошо изученные явления. В этой книге мы ограничимся немногими иллюстрациями`. На наш взгляд, наиболее впечатляющим примером является неустойчивость структуры Метагалактики относительно значения массы m| электрона. Действительно, при
e температурах T < 10**10 K атом водорода в Метагалактике абсолютно стабильный элемент. Эта стабильность обеспечивается самым суровым ограничением — законом сохранения энергии, запрещающим реакцию
p+e| — > n+v (65)
(p, n, e|, v — соответственно протон, нейтрон, электрон и нейтрино). Однако, используя значения превосходно измеренных масс частиц, участвующих в реакции (65), легко убедиться, что при увеличении массы m| более чем в 2.5 раза реакция (65) осуществлялась бы при сколь угодно малых температурах. А это означало бы, что при увеличении массы m| атом водорода коллапсировал бы в нейтрон и нейтрино.[20]
Нетрудно очертить сценарий эволюции метагалактик, в которой электрон был бы тяжелей «нашего» в 2.5 раза, а все остальные законы (в том числе и константы) имели бы прежнюю форму.
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Книга Брайана Грина «Элегантная Вселенная» — увлекательнейшее путешествие по современной физике, которая как никогда ранее близка к пониманию того, как устроена Вселенная. Квантовый мир и теория относительности Эйнштейна, гипотеза Калуцы — Клейна и дополнительные измерения, теория суперструн и браны, Большой взрыв и мультивселенные — вот далеко не полный перечень обсуждаемых вопросов.Используя ясные аналогии, автор переводит сложные идеи современной физики и математики в образы, понятные всем и каждому.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.