Геометрическая рапсодия - [6]

Шрифт
Интервал

На плоскости задача элементарно проста: шесть кругов касаются седьмого, центрального (3). (В качестве таких кругов приятно взять четыре гравюры М. К. Эсхера, которые называются "Пределы на круге".) Но со сферами дело обстоит куда сложнее — недаром Ньютон так и не смог убедить своего друга Грегори, что их может быть не больше тринадцати, включая сюда и "целуемую".

В те годы пинг-понг еще не был в моде, а то бы спорщики могли поставить любопытный эксперимент. Отбросив предрассудок, им надо было взять "чертову дюжину" шариков и сдавить их прозрачной резиновой пленкой. Они могли бы убедиться, что "обычная" дюжина охватывает "чертов" шарик таким образом, что все двенадцать шариков располагаются в вершинах воображаемого икосаэдра (правильного двадцатигранника) и между ними остается небольшой зазор (4). Но достаточен ли этот зазор, чтобы втиснуть еще и четырнадцатый шарик? Вот в чем вопрос. Можно пробовать располагать шары в самых различных комбинациях, но место для еще одного не освобождается. Это, однако, вовсе не доказывает, что такую удачную комбинацию найти невозможно.

Но все-таки — да или нет? Как доказать строго? Хоппе придумал — думайте, если это доставляет удовольствие, и вы.

Быть может, подобные головоломки вам, как и Исааку Ньютону, покажутся трудными, но попытайтесь все-таки совершить над собой некое интеллектуальное насилие. Все это не просто стандартные "вопросы на повторение пройденного". Впереди космическое развитие темы Круга и Сферы, и к нему надо подготовиться.

1


...По счастью, журнал "Нейчур", заложивший основы изучения геометрических поцелуев, известен своей серьезностью. Серьезностью даже в шутках. Напечатав стансы Содди о целующихся кругах и сферах, редакция посчитала, что вопрос освещен недостаточно фундаментально. И спустя полгода, в январском номере 1937 года, опубликовала еще один заключительный станс, принадлежащий перу Форольда Госсета, обитавшего отнюдь не на Парнасе, но в Кембриджском университете. Это было одно из многих стихотворных произведений, присланных в редакцию с единственной целью: обобщить формулу Содди на случай n-мерного пространства, в котором целуются, естественно, n-мерные сферы — гиперсферы.

Чтобы вполне насладиться этим поэтическим шедевром, нам надо справиться с совсем простым делом: представить в себе n-мерную сферу.

2


"Когда нематематик слышит о четырехмерных вещах, его охватывает священный трепет..." — так говорил Альберт Эйнштейн. А Герман фон Гельмгольц считал, что представить себе четвертое измерение — все равно что слепому от рождения вообразить краски. Заметьте, речь идет всего лишь о четвертом измерении. Что же тогда сказать о пятом, шестом, а то и вообще об n-м?

И все-таки рискнем!

Впервые слова "n-мерное пространство" прозвучали в 1854 году в речи Бернгарда Римана при вступлении его на должность преподавателя Геттингенского университета. Она называлась "О гипотезах, образующих основания геометрии" и в самом деле провозглашала совсем новую, неожиданную и уж во всяком случае неевклидовую геометрию, названную впоследствии "римановой". Впрочем, и Евклид, создавая свою геометрию, возможно, размышлял о "мере мира". "Точка — это то, что не имеет частей", — говорил он. Современный математик посчитал бы эти слова пусть примитивным, но довольно точным определением "объекта нулевого измерения". Точка, оставленная карандашом на бумаге, острие булавки или башенного шпиля — вот эти "объекты" в реальной жизни. Сфера нулевого измерения — это и есть точка.

3


Нить, проволока и любая иная линия — это уже одномерные предметы: у них есть длина. Сфера в пространстве одного измерения — это две точки на прямой: центр этой одномерной сферы лежит посередине между ними.

Представители двумерного мира имеют и длину и ширину — это ленты, куски ткани, листы бумаги" Окружность, граница двумерного круга — вот что такое сфера в пространстве двух измерений.

И наконец, кубы, пирамиды, дома, корабли и самолеты так же, как и мы с вами, входят в неисчислимую армию "трехмерцев", обладающих вдобавок к длине и ширине еще и высотой. У них есть объем. Сфера в трехмерном пространстве — это шар, "обычная" сфера.

Но вот что любопытно. Проволоку можно сломать, лист бумаги разрезать, а куб распилить. И при этом получается, что одномерная поверхность, линия, разделяется поверхностью нулевого измерения — точкой. Двумерная плоскость делится надвое одномерной линией, а трехмерный куб — двумерной плоскостью. Иными словами, границей "разлома" тела служит какое-то другое тело, измерение которого на единицу ниже.

Что же тогда служит границей четырехмерной сферры? Поистине прав Эйнштейн: оторопь берет, когда пытаешься все это вообразить!

4


Но не будем отчаиваться и зайдем с другого конца.

Если точку "протащить" по бумаге, то получится линия. Линия, в свою очередь, "заметает" плоскость — получается квадрат. Вытянем квадрат из плоскости — сделаем куб. Это уже третье измерение. Но что же такое надо сделать с кубом, чтобы обратить его в четырехмерное тело? И как его себе представить?

А что мы делаем, чтобы изобразить на плоском листе бумаги трехмерный куб? Мы проецируем его на плоскость. Получаются два квадрата один в другом, соединенные вершинами (5). Так спроецируем же и четырехмерный куб! Мы получим по аналогии два куба, один в другом, и снова вершины попарно соединены. Вот он, посланец четвертого измерения, вернее, не сам он, а его проекция на плоскость (6).


Еще от автора Карл Ефимович Левитин
Променянный рай

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


С вами ничего не случится

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Инспектор по кадрам

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Жизнь невозможно повернуть назад

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Научная журналистика как составная часть знаний и умений любого ученого. Учебник по научно-популярной журналистике

Эта книга адресована сразу трем аудиториям – будущим журналистам, решившим посвятить себя научной журналистике, широкой публике и тем людям, которые делают науку – ученым. По сути дела, это итог почти полувековой работы журналиста, пишущего о науке, и редактора научно-популярного и научно-художественного журнала. Название книги «Научная журналистика как составная часть знаний и умений любого ученого» возникло не случайно. Так назывался курс лекций, который автор книги читал в течение последних десяти лет в разных странах и на разных языках.


Рекомендуем почитать
Знание-сила, 2009 № 09 (987)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 11 (977)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2008 № 02 (968)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 2007 № 02 (956)

Ежемесячный научно-популярный и научно-художественный журнал.


Знание-сила, 1999 № 04 (862)

Ежемесячный научно-популярный н научно-художественный журнал для молодежи.


Популярная палеогеография

Автор рассказывает о достижениях палеогеографии — науки, изучающей физико-географические условия минувших геологических эпох. История Земли и жизни на ней, от самого образования планеты до современности; дрейф материков и новая глобальная тектоника; процессы горообразования и климат прошлых эпох — вот только некоторые из тем, которым посвящена эта увлекательная книга.