Гены и развитие организма - [60]
У структурных генов эукариот в положении —10 ничего подобного нет, но зато очень похожая последовательность была обнаружена в районе —30 (у разных генов это место варьирует от —29 до —33). Эта последовательность выглядит, как ТАТА и по имени обнаруживших ее ученых названа Голдберг — Хогнесс-последовательность, или, короче, «ТАТА-бокс». Нарушение этой последовательности или ее изъятие приводит к замедлению транскрипции (она реже начинается) и, главное, к неправильному считыванию, т. е. к изменению стартовой точки на несколько нуклеотидов вперед или назад.
Можно думать, что РНК-полимераза, которая у эукариот по размеру больше, чем бактериальная, занимает больший участок на ДНК. Между ее «центром узнавания», который присоединяется к ТАТА-последовательности, и «активным центром», который должен находиться над стартовой точкой, расстояние равно длине в 30 пар нуклеотидов (~10 нм). Для бактериального фермента это расстояние втрое меньше.
Te участки ДНК, о которых мы здесь рассказали, не представляют принципиального интереса, так как они определяют лишь точность стартовой точки. Ими нельзя объяснить, почему один ген работает, а другой нет. Поэтому большее внимание сейчас уделяется участкам, которые располагаются еще дальше от стартовой точки, чем «ТАТА-бокс». И действительно, у эукариот в районе от —70 до —80 нуклеотидов находится область с похожей последовательностью у разных генов. Роль этого участка пока не установлена. Может быть, более интересно, что скорость транскрипции сильно меняется (модулируется) в зависимости от наличия участка, располагающегося па расстоянии от —80 до —200 нуклеотидов от стартовой точки. Там, хочется думать, и находится регуляторный участок гена, к которому присоединяется регуляторный белок и уменьшает или увеличивает активность гена.
Сейчас уже накапливаются данные о последовательности нуклеотидов в этих регуляторных участках, которые называют модуляторами или энхансерами (усилителями). Пока не очень ясно, насколько строго должна соблюдаться такая последовательность. По одним данным, даже значительные ее изменения оказывают небольшой эффект, по другим — замена всего одной пары нуклеотидов увеличивает (или уменьшает) активность гена во много раз. Неясно и следующее. Никакой белок, даже самый длинный, не может протянуться на 100 и более нуклеотидов. Следовательно, остается не так много возможностей. Либо регуляторный белок действует на стартовую точку на расстоянии, либо молекула ДНК в этом районе сложена так, что регуляторный белок оказывается вблизи РНК-полимеразы и может контролировать ее поведение. Сейчас обсуждается и такая идея: модуляторный участок — это то место в районе гена, где РНК-полимераза может присоединиться к ДНК. Далее она уже легко «проскальзывает» до ТАТА-участка и точно со стартовой точки начинает транскрипцию,
2. Белки хроматина
Мы уже знаем, что хроматин состоит из ДНК и гистонов в равном весовом количестве и негистоновых белков (НГБ), которых в неактивных районах хромосомы всего 0,2 веса ДНК, а в активных — более чем 1,2 (в среднем НГБ мепьше, чем ДНК). Мы знаем также, что гистоны вместе с ДНК образуют нуклеосомы, и роль гистонов. очевидно, должна быть прежде всего структурная — поддерживать нуклеосомную организацию ДНК и также создавать высшие уровни ее укладки. Ho если роль гистонов так пассивна, почти механическая, то чем объяснить, что существуют варианты гистонов, которые синтезируются на разных стадиях развития морского ежа? Почему гистона H1 заметно меньше в активно работающих генах? Чем также объяснить химические модификации гистонов: перед образованием митотических хромосом в гистонах возрастает число присоединенных к ним фосфатных групп, а перед началом активной транскрипции — число ацетильных групп?
Все эти факты показывают, что гистоны играют существенную роль не только в организации хроматина, но и в происходящей на нем транскрипции. С гистонами или, точнее, с характером их связи с ДНК связана такая важная особенность ДНК, как ее повышенная чувствительность к действию нуклеаз (ферментов, разрывающих нить ДНК) именно в активных генах или в генах, готовых начать свою функцию. Похоже, что ДНК в районе таких генов менее связана с гистонами, более доступна атаке ферментов.
Негистоновые белки хроматина (НГБ) — очень разнородная группа белков, но каждый из них представлен в небольшом количестве. Выше уже рассказывалось, как новая техника использования антител против различных белков хроматина и флюоресцентных красителей позволила различить по меньшей мере две группы НГБ с различными свойствами и локализацией. Одни НГБ располагаются вдоль всей хромосомы — вероятно, это НГБ, связанные со структурой хромосом. Другие НГБ располагаются дискретно и связаны с отдельными генами. Они-то и могут быть специфически регулирующими белками, определяющими работу отдельных генов.
Часть НГБ, очевидно, играет такую же структурную роль, как и гистоны. Например, есть группа белков хроматина, которые движутся в электрофорезе быстрее других. Их так и называют — «быстродвижущаяся группа» (БДГ, или, по-английски, HMG). По своему строению и составу аминокислот они напоминают гистоны и, возможно, когда-то произошли от них. Оказалось, что некоторые белки БДГ, а именно БДГ-14 и БДГ-17 преимущественно располагаются в районах активно работающих генов. Их функция, очевидно, не только структурная.
Перед вами история Homo sapiens, Человека разумного, рассказанная в необычной манере, непринужденно и увлекательно. Кто мы на самом деле, как происходила наша эволюция? Жан-Батист де Панафье в своей книге дает нам возможность по-новому взглянуть на самих себя. Серия «Наука на отдыхе» предлагает новый подход к изучению науки. Девиз серии: отдых-солнце-книга. Изучайте науку с удовольствием!
Академик АМН СССР рассказывает об иммунитете, силах, которые защищают наш организм от микробов, вирусов, раковых заболеваний, хранят неповторимую индивидуальность нашего телесного 'я', говорит о болезнях, возникающих при нарушении иммунитета и мерах борьбы с ними, а также об использовании клеток иммунной системы в биотехнологии (производстве лечебных и диагностических препаратов, сверхчувствительных реагентов), об использовании 'раковых клеток в мирных целях'. Издание рассчитано на самые широкие круги читателей.
Иммунология — наука о сохранении индивидуальности организма, о его иммунитете. Познание явлений иммунитета ведет к раскрытию тайн рождения и старения организмов, причин отторжения органов при их трансплантации и возникновения опухолей, к полной победе над инфекциями. О процессе этого познания, полного драматизма и парадоксов, и рассказывает автор книги. Она может быть полезна лекторам, пропагандистам, слушателям народных университетов естественнонаучных знаний и всем, кто интересуется современными проблемами биологии.
Расшифровка генетического кода, зашита от инфекционных болезней и патент на совершенную фиксацию азота, проникновение в тайну злокачественного роста и извлечение полезных ископаемых из морских вод — неисчислимы сферы познания и практики, где изучение микроорганизма помогает добиваться невиданных и неслыханных результатов… О достижениях микробиологии, о завтрашнем дне этой науки рассказывает академик АМН СССР О. Бароян.
Acacia mangium — это быстрорастущее тропическое вечнозеленое дерево, которое при благоприятных условиях может вырасти до 30 м в высоту и до 50 см в толщину. Низинный вид, связанный с окраинами тропических лесов и нарушенными, хорошо дренированными кислыми почвами. Аборигенное растение для Папуа, Западной Ириан-Джайи и Молуккских островов в Индонезии, Папуа-Новой Гвинеи и северо-восточной части Квинсленда в Австралии. Из-за быстрого роста и устойчивости к очень бедным почвам A. mangium была завезена в некоторые страны Азии, Африки и западного полушария, где она используется в качестве плантационного дерева.
«Ой, фу!» Табу в нашем мире живут столько же, сколько существует общество. Все мы стремимся быть ухоженными, хорошо пахнуть, но стоит нам остаться наедине с самим собой, как наше тело начинает жить собственной жизнью: палец сам тянется к ноздре – избавиться от накопившегося содержимого, нос – понюхать собственную кожу на предмет чужеродных запахов, а живот… Живот спешит скорее «выдохнуть» все, что копил в себе целый день. Все это – естественно, но мы упорно продолжаем этого стесняться. А стеснение нередко приводит к неприятным казусам в повседневности, личной жизни и даже к проблемам со здоровьем.