Генетический детектив. От исследования рибосомы к Нобелевской премии - [11]

Шрифт
Интервал

Фон Лауэ понял, что в зависимости от положения атома рассеивающиеся от него волны проходят разное расстояние. Они запаздывают или обгоняют друг друга, поэтому оказываются в разных фазах и более или менее сильно друг друга гасят. Но в определенных направлениях расстояние между волнами сопоставимо с их длинами, а минимумы и максимумы волн совпадают, и они остаются в фазе, усиливая друг друга, – тогда появляются пятна на снимках.


Рис. 3.2. Сложение волн зависит от их взаимоотношения


Этот эксперимент показал, что рентгеновские лучи определенно можно считать волнами. Тогда же были получены первые прямые доказательства того, что кристалл – это структура из правильно упорядоченных атомов. На основе предположений о расстоянии между атомами удалось приблизительно вычислить длину волн рентгеновских лучей – они более чем в тысячу раз короче волн видимого света. Два года спустя, в 1914 году, фон Лауэ был удостоен Нобелевской премии по физике.

Он также пытался в точности определить, как именно расположены в кристалле атомы серы и цинка. Но в данном случае его анализ оказался ошибочным. Лоуренс Брэгг, молодой аспирант из Кембриджа, заинтересовался результатами фон Лауэ и, покорпев над ними, нашел элегантный способ трактовки данной проблемы, который помог логически вывести верную структуру кристалла. Брэгг догадался, что атомы в кристалле могут образовывать разнонаправленные совокупности плоскостей, расстояния между которыми могут различаться. То есть рентгеновские лучи, рассеивающиеся от атомов, отражаются от плоскости. Для любого множества плоскостей дополнительное расстояние, проходимое отраженными от смежных плоскостей рентгеновскими лучами, будет под определенным углом равно целой длине волны. Если волны распространятся от каждой группы плоскостей под таким углом, то останутся в фазе и будут усиливать друг друга, образуя дифракционное пятно.

Отношение, описывающее расстояние между плоскостями и угол между ними, было названо законом Брэгга. В любой точке может находиться несколько плоскостей, удовлетворяющих условию Брэгга, и каждая из них может давать дифракционное пятно, будучи расположенной под нужным углом к входящему рентгеновскому лучу. Также, когда вы поворачиваете кристалл, все новые плоскости будут удовлетворять условию Брэгга и давать новые дифракционные пятна. Полностью повернув кристалл вокруг луча, можно измерить все возможные дифракционные пятна от этого кристалла. Применив свой анализ, Брэгг смог верно вывести расположение атомов в кристалле фон Лауэ. Он написал сообщение о своем анализе в Кембриджское философское общество в ноябре 1912 года, но поскольку был всего лишь аспирантом, его профессор Дж. Дж. Томсон, открывший электрон, должен был официально передать статью, которую написал Брэгг, в журнал общества.


Можно считать, что атомы в кристалле образуют разнонаправленные плоскости, и расстояния между этими плоскостями различаются


Рис. 3.3. Плоскости кристалла; как они отражают рентгеновские лучи под разными углами


Затем Брэгг воспользовался своей теорией, проанализировав одну из простейших в природе молекулу поваренной соли. К тому времени химики уже определили, что она состоит из тесно связанных двух атомов (натрия и хлора). Когда Брэгг изучил дифракционные пятна на рентгеновской пленке после облучения трехмерных кристаллов соли, оказалось, что вместо молекул они содержат ионы натрия и хлора, расположенные в шахматном порядке. При этом в каждом ионе натрия не хватает одного электрона, а в ионе хлора есть лишний электрон, и эти ионы имеют противоположные заряды. Это означало, что они удерживаются в кристалле под действием электрических сил.

В те времена многие химики не принимали заявления молодого аспиранта-физика о том, что даже такое простое вещество, как поваренная соль, устроено совершенно иначе, нежели они полагали. Один из них, Генри Армстронг, профессор химии из Имперского колледжа в Лондоне, злобно поддел Брэгга в письме, адресованном журналу Nature и озаглавленном «Бедная поваренная соль»[8]. Он написал, что предложенная Брэггом структура хлорида натрия «более чем вопиюща с точки зрения здравого смысла», и присовокупил обвинение, пожалуй, убийственное для англичанина: «Это абсурд в n-ной степени, а не химический крикет»[9]. Однако правота Брэгга не просто подтвердилась; он также определил своим методом и строение многих других простых молекул. Впервые молекулы удалось «увидеть». Способ определения трехмерной структуры атомов в молекуле с помощью кристаллизации и анализа дифракционных пятен получил название рентгеновской кристаллографии.

Отец Брэгга-младшего, Уильям Брэгг (их обоих звали Уильям, поэтому сын пользовался вторым именем – Лоуренс), был профессором физики и разработал ряд приборов, позволявших с большой точностью измерять рентгеновские дифракционные пятна. После того как Брэгг-младший разработал свою теорию, они с отцом поставили несколько экспериментов. Пока Лоуренс оставался в Кембридже, его отец путешествовал, выступая с лекциями о той работе, которую выполнили «он со своим мальчиком». Какое-то время Брэгг-младший волновался, что, поскольку он просто аспирант, знаменитый отец присвоит себе всю славу за его работы, между ними явно существовала некоторая напряженность. Оказалось, что Нобелевский комитет был об этом хорошо осведомлен. В 1915 году оба Брэгга были удостоены премии по физике. Лоуренс, которому тогда было двадцать пять, остается самым молодым нобелевским лауреатом. Он не смог отправиться в Стокгольм, так как Первая мировая война была в разгаре и его брат Роберт был убит в бою всего за несколько недель до того, как пришло известие о премии. Поэтому Брэгг прочитал свою нобелевскую лекцию только в 1922 году.


Рекомендуем почитать
Победоносцев. Русский Торквемада

Константин Петрович Победоносцев — один из самых влиятельных чиновников в российской истории. Наставник двух царей и автор многих высочайших манифестов четверть века определял церковную политику и преследовал инаковерие, авторитетно высказывался о методах воспитания и способах ведения войны, давал рекомендации по поддержанию курса рубля и композиции художественных произведений. Занимая высокие посты, он ненавидел бюрократическую систему. Победоносцев имел мрачную репутацию душителя свободы, при этом к нему шел поток обращений не только единомышленников, но и оппонентов, убежденных в его бескорыстности и беспристрастии.


Великие заговоры

Заговоры против императоров, тиранов, правителей государств — это одна из самых драматических и кровавых страниц мировой истории. Итальянский писатель Антонио Грациози сделал уникальную попытку собрать воедино самые известные и поражающие своей жестокостью и вероломностью заговоры. Кто прав, а кто виноват в этих смертоносных поединках, на чьей стороне суд истории: жертвы или убийцы? Вот вопросы, на которые пытается дать ответ автор. Книга, словно богатое ожерелье, щедро усыпана массой исторических фактов, наблюдений, событий. Нет сомнений, что она доставит огромное удовольствие всем любителям истории, невероятных приключений и просто острых ощущений.


Фаворские. Жизнь семьи университетского профессора. 1890-1953. Воспоминания

Мемуары известного ученого, преподавателя Ленинградского университета, профессора, доктора химических наук Татьяны Алексеевны Фаворской (1890–1986) — живая летопись замечательной русской семьи, в которой отразились разные эпохи российской истории с конца XIX до середины XX века. Судьба семейства Фаворских неразрывно связана с историей Санкт-Петербургского университета. Центральной фигурой повествования является отец Т. А. Фаворской — знаменитый химик, академик, профессор Петербургского (Петроградского, Ленинградского) университета Алексей Евграфович Фаворский (1860–1945), вошедший в пантеон выдающихся русских ученых-химиков.


Южноуральцы в боях и труде

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Три женщины

Эту книгу можно назвать книгой века и в прямом смысле слова: она охватывает почти весь двадцатый век. Эта книга, написанная на документальной основе, впервые открывает для русскоязычных читателей неизвестные им страницы ушедшего двадцатого столетия, развенчивает мифы и легенды, казавшиеся незыблемыми и неоспоримыми еще со школьной скамьи. Эта книга свела под одной обложкой Запад и Восток, евреев и антисемитов, палачей и жертв, идеалистов, провокаторов и авантюристов. Эту книгу не читаешь, а проглатываешь, не замечая времени и все глубже погружаясь в невероятную жизнь ее героев. И наконец, эта книга показывает, насколько справедлив афоризм «Ищите женщину!».


Кто Вы, «Железный Феликс»?

Оценки личности и деятельности Феликса Дзержинского до сих пор вызывают много споров: от «рыцаря революции», «солдата великих боёв», «борца за народное дело» до «апостола террора», «кровожадного льва революции», «палача и душителя свободы». Он был одним из ярких представителей плеяды пламенных революционеров, «ленинской гвардии» — жесткий, принципиальный, бес— компромиссный и беспощадный к врагам социалистической революции. Как случилось, что Дзержинский, занимавший ключевые посты в правительстве Советской России, не имел даже аттестата об образовании? Как относился Железный Феликс к женщинам? Почему ревнитель революционной законности в дни «красного террора» единолично решал судьбы многих людей без суда и следствия, не испытывая при этом ни жалости, ни снисхождения к политическим противникам? Какова истинная причина скоропостижной кончины Феликса Дзержинского? Ответы на эти и многие другие вопросы читатель найдет в книге.


Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни. Книга «Вечность.


Жизнь на грани

Жизнь — самый экстраординарный феномен в наблюдаемой Вселенной; но как возникла жизнь? Даже в эпоху клонирования и синтетической биологии остается справедливой замечательная истина: никому еще не удалось создать живое из полностью неживых материалов. Жизнь возникает только от жизни. Выходит, мы до сих пор упускаем какой-то из ее основополагающих компонентов? Подобно книге Ричарда Докинза «Эгоистичный ген», позволившей в новом свете взглянуть на эволюционный процесс, книга «Жизнь на грани» изменяет наши представления о фундаментальных движущих силах этого мира.


Нереальная реальность. Путешествие по квантовой петле

«Карло Ровелли – это человек, который сделал физику сексуальной, ученый, которого мы называем следующим Стивеном Хокингом». – The Times Magazine Что есть время и пространство? Откуда берется материя? Что такое реальность? «Главный парадокс науки состоит в том, что, открывая нам твердые и надежные знания о природе, она в то же время стремительно меняет ею же созданные представления о реальности. Эта парадоксальность как нельзя лучше отражена в книге Карло Ровелли, которая посвящена самой острой проблеме современной фундаментальной физики – поискам квантовой теории гравитации. Упоминание этого названия многие слышали в сериале “Теория Большого взрыва”, но узнать, в чем смысл петлевой гравитации, было почти негде.


Квантовые миры и возникновение пространства-времени

Надеемся, что отсутствие формул в книге не отпугнет потенциальных читателей. Шон Кэрролл – физик-теоретик и один из самых известных в мире популяризаторов науки – заставляет нас по-новому взглянуть на физику. Столкновение с главной загадкой квантовой механики полностью поменяет наши представления о пространстве и времени. Большинство физиков не сознают неприятный факт: их любимая наука находится в кризисе с 1927 года. В квантовой механике с самого начала существовали бросающиеся в глаза пробелы, которые просто игнорировались.