Фрегат капитана Единицы - [31]
— Вы, вероятно, имеете в виду Христофора Колумба, — перебил капитана штурман Игрек. — Как известно, Колумб задумал попасть в Индию кратчайшим путём. Он решил плыть не на восток, огибая Африку, как это делали до тех пор, а на запад и ещё раз подтвердить, таким образом, что Земля — шар. Для экспедиции нужны были немалые средства. Однако испанские сановники, к которым он обратился за помощью, не спешили снабдить отважного мореплавателя деньгами. Затея Колумба казалась им нелепой. Они полагали, что если бы в Индию действительно можно было попасть с запада, кто-нибудь давно уж до этого бы додумался. Услыхав их доводы, Колумб взял куриное яйцо и предложил кому-нибудь из собравшихся поставить его на стол острым концом, только так, чтобы оно не упало! Те попробовали разок-другой и убедились, что это невозможно. Тогда Колумб слегка ударил острым концом яйца по столу. Скорлупа чуть надломилась, и яйцо осталось стоять как вкопанное. «Видите, сказал Колумб, — до этого тоже никто ещё не додумался, однако…» Находчивость его возымела действие, и он получил то, что просил. С тех пор колумбово яйцо вошло в поговорку. Кстати, экспедиция привела Колумба не в Индию, как он думал, а в Америку. Так была открыта новая часть света. А всему причиной — куриное яйцо!
Штурман кончил свой рассказ, и все наперебой стали вспоминать остроумные выходки учёных. Только мне что-то ничего не вспоминалось. Я, знаете, как-то мало бываю среди научных работников. Но потом я всё-таки рассказал о том, как моя мама была на одном учёном заседании физиков.
Подумать только, собрались известные учёные и после серьёзных разговоров стали придумывать, как поймать льва, случайно забежавшего в пустыню. Один учёный предложил вот что. Надо, сказал он, взять огромное решето и просеять сквозь него весь песок пустыни. Таким образом лев непременно окажется в решете, потому что через решето ему нипочём не пролезть.
Второй учёный предложил перегородить пустыню забором на две равные части. Ясно, что лев будет в одной из них. Эту половину надо снова разгородить пополам. Теперь искать льва придётся только в четвертушке пустыни. А это уже намного легче! Четвертушку, в свою очередь, следует снова перегородить пополам, — и так до тех пор, пока отгороженный участок не станет таким крохотным, что льву просто некуда будет податься. Тут его можно брать голыми руками.
Третий учёный… Какие способы предложил третий, четвёртый и все остальные, я позабыл. Но капитан сказал, что вполне обойдётся и двумя.
Если вы придумаете ещё какие-нибудь способы, пожалуйста, напишите мне!
Это так весело — ловить в пустыне одинокого льва!
ДОМА!
Сейчас мы в последний раз бросим якорь в бухте А, откуда начинался наш рейс: земля-то, между прочим, круглая!
Итак, путешествие окончено. Я уже вижу берег, толпу встречающих и среди них мою дорогую маму-Восьмёрку. Она держит Стакса и Топса. Только почему-то вниз головами. Обезьяны ведут себя беспокойно — наверное, ждут не дождутся, когда я их обниму.
Штурман отдаёт последние распоряжения.
Капитан прощается с нами и напоследок не забывает напомнить, что хоть мы и многое узнали, но это всего лишь капля в математическом море. Скоро он вновь отправляется в плавание и обещает взять с собой всех желающих.
Вот уже загрохотала якорная цепь. С пристани кричат «ура!», и команда запевает прощальную песенку:
КОНЕЦ ПЛАВАНИЯ
1966 г.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру.