Фрегат капитана Единицы - [27]
Я вынул рулетку.
— В каких единицах будем измерять?
— Да в каких хочешь! Хоть в километрах… Правда, километры для стола, пожалуй, не годятся…
Решили вычислять в сантиметрах. И вышло у нас, что по оси х координата орешка равна 6 сантиметрам, а по оси у — 8.
— Вот тебе и точные координаты орешка на столе, — сказал капитан, — 6 и 8. И запомни, пожалуйста, что первое число всегда означает расстояние по выбранной оси х, а второе — по оси у. А то попадёшь совсем по другому адресу.
— А как же определяются координаты земные? — спросил я. — Ведь земля не стол, а шар. У шара нет никаких краёв.
Капитан хмыкнул.
— Как это ты здорово заметил! Земля и в самом деле шар. Правда, чуточку сплющенный, но это не в счёт. А шар — это такое геометрическое тело, у которого все точки поверхности одинаково удалены от центра. Так вот, чтобы найти нужную нам точку на поверхности шара (то есть на сфере), надо знать её координаты. А для этого необходимо прежде всего выбрать оси координат. Для сферы это не прямые линии, а две взаимно перпендикулярные окружности. Одна из них — та, что делит Землю точно пополам на Северное и Южное полушария, — называется экватором. Другая, которая проходит через Северный и Южный полюсы, — нулевым меридианом.
Услыхав про нуль, я очень обрадовался и захотел узнать, отчего меридиан назвали нулевым.
— Дело в том, — объяснил капитан, — что через Северный и Южный полюсы можно провести сколько угодно меридианов. Поэтому необходимо было условиться, от какого из них вести счёт. Для этого выбрали меридиан, который проходит через пригород Лондона — Гринвич. Вот почему нулевой меридиан называют ещё и гринвичским. Начиная с той точки, где нулевой меридиан и экватор пересекаются, экватор разделили на 360 одинаковых частей и провели 180 меридианов, разделив таким образом Землю на 360 долек.
— Совсем как апельсин, — сказал я. — Только долек у апельсина гораздо меньше.
Но вот чего я не мог понять: экватор разделили на 360 долек, а меридианов провели всего 180! Как это получилось?
— Ты не подумал о том, что каждый меридиан пересекает экватор в двух точках, — объяснил капитан. — Уразумел? Тогда пойдём дальше. Покончив с экватором, стали делить меридиан. Расстояние по меридиану между экватором и каждым полюсом разделили на 90 равных частей и провели параллельные экватору окружности, которые получили название параллелей.
«Это уже больше похоже не на апельсин, а на арбуз, нарезанный кружками», — отметил я про себя.
— А так как у Земли два полюса, — продолжал капитан, — таких окружностей получилось 180. По мере приближения к полюсам радиусы параллелей всё время уменьшаются, а на полюсах и вовсе обращаются в точку,
— Стало быть, экватор — это нулевая параллель? — предположил я.
— Разумеется, — кивнул капитан. — Вижу, ты в этом разобрался. Тогда пойдём ещё дальше. Разделив сферу на 180 меридианов и 180 параллелей, земной шар как бы поместили в сетку. Расстояние между двумя ближайшими меридианами, отсчитанное по дуге любой параллели, условились считать одним градусом географической долготы, а расстояние между двумя параллелями, отсчитанное по дуге любого меридиана, — одним градусом географической широты. Каждый градус, в свою очередь, делится на 60 минут, минута — на 60 секунд.
Градусы обозначаются кружком минуты — одним штрихом, секунда — двумя. Вот теперь ты, пожалуй, сам смог бы разобрать запись, сделанную рыбаками. Я взял бумажку и прочитал:
— «15° 30΄ 14˝» — 15 градусов 30 минут 14 секунд зап. долг…
— Что ж ты запнулся? — спросил капитан. — Зап. долг. — значит западной долготы. Это сказано для того, чтобы указать, в какую сторону от гринвичского меридиана следует отмерять градусы долготы.
После этого мне уже действительно было нетрудно прочитать записку до конца: «15 градусов 30 минут 14 секунд западной долготы, 3 градуса 10 минут 5 секунд северной широты».
— Туда-то мы и спешим, — сказал капитан.
В это время с марса громко закричали: «Люди за бортом!» Что произошло дальше, описывать не стану. Скажу только, что через несколько минут потерпевшие были уже на борту. Все они еле держались на ногах, но сразу же пришли в себя, как только попробовали снадобье, специально для этого случая приготовленное коком. Пи сказал, что это его собственное изобретение, которое он назвал «коктейль для утопающих».
Так благополучно закончилось это приключение. Но вскоре за ним последовало другое.
Наступил полдень. Солнце висело над самой головой. Капитан сказал, что мы огибаем западный берег Африки, и посоветовал быть начеку, потому что нас ожидает… Он не успел договорить: волны закипели, забурлили, и вот уже над ними показался наш старый знакомый — Нептун. На этот раз он ни на кого не гневался. По-моему, он был даже чересчур весел.
Фрегат остановился. Спустили трап прямо в море. Нептун величественно проследовал на палубу. Команда выстроилась перед ним в полном параде, и он каждому пожал руку. Но когда очередь дошла до меня и до кока, Нептун неожиданно подхватил нас и швырнул прямо в море! Мы заорали не своим голосом, но нас быстро выловили и водворили на судно под всеобщий смех и ликование. Мы стояли мокрые, взъерошенные, злые. Но Нептун словно и не замечал этого. Он крепко расцеловал нас и поздравил с посвящением в моряки.
В сборник вошли повести Владимира Лёвшина о приключениях незадачливого путешественника Магистра Рассеянных Наук и его неизменной спутницы Единички: «Диссертация Рассеянного Магистра», «Путевые заметки Рассеянного Магистра» и «В поисках похищенной марки». Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Он то и дело совершает ошибки, которые анализируют школьники Клуба «Рассеянного Магистра».
Книга о свойствах чисел и их закономерностях. Действие происходит в сказочном математическом городе, где в столе находок разыскивают числа по их приметам. Жители города Энэмска знают — числа живут особенной жизнью и дружба с ними сулит приятные неожиданности и нечаянные открытия. Разумеется тем, кто знает их законы.Многие, наверное, читали книги Левшина В. и Александровой Э. «Путешествие по Карликании и Аль-Джебре», «Фрегат капитана Единицы», «Магистр Рассеянных Наук» и другие, которые привили любовь к математике не одному человеку.
Заблудиться в лабиринте чисел очень просто. Но если вашим проводником согласится стать сама многоуважаемая Арифметика, путешествие удастся на славу. Каждая остановка, а их будет тридцать две (по числу букв алфавита) подарит вам незабываемые впечатления, а задачи, которые Арифметика иногда будет подкидывать своим спутникам, внесут ещё большее разнообразие в этот и без того прихотливый маршрут. Замечательная книга о приключениях мальчика Чита в Лабиринте Чисел и о его проводнице — Арифметике. В увлекательной форме знакомит детей со многими математическими и логическими понятиями.
Герой книги — пылкий поклонник математики, неутомимый путешественник и путаник Магистр Рассеянных Наук — колесит по свету в погоне за математическими загадками и казусами. Его рассказы, полные самых невероятных приключений и ещё более невероятных ошибок, развивают наблюдательность, совершенствуют математическую логику и убедительно подтверждают справедливость древней истины: на ошибках учатся.Для младшего школьного возраста.
«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях. Книга дополнена научно-популярными статьями о четвертом измерении. Ее с интересом и пользой прочтут все любители занимательной математики.
Любую задачу можно решить разными способами, однако в учебниках чаще всего предлагают только один вариант решения. Настоящее умение заключается не в том, чтобы из раза в раз использовать стандартный метод, а в том, чтобы находить наиболее подходящий, пусть даже и необычный, способ решения.В этой книге рассказывается о десяти различных стратегиях решения задач. Каждая глава начинается с описания конкретной стратегии и того, как ее можно использовать в бытовых ситуациях, а затем приводятся примеры применения такой стратегии в математике.
Давид Гильберт намеревался привести математику из методологического хаоса, в который она погрузилась в конце XIX века, к порядку посредством аксиомы, обосновавшей ее непротиворечиво и полно. В итоге этот эпохальный проект провалился, но сама попытка навсегда изменила облик всей дисциплины. Чтобы избавить математику от противоречий, сделать ее «идеальной», Гильберт исследовал ее вдоль и поперек, даже углубился в физику, чтобы предоставить квантовой механике структуру, названную позже его именем, — гильбертово пространство.
Саймон Сингх рассказывает о самых интересных эпизодах мультсериала, в которых фигурируют важнейшие математические идеи – от числа π и бесконечности до происхождения чисел и самых сложных проблем, над которыми работают современные математики.Книга будет интересна поклонникам сериала «Симпсоны» и всем, кто увлекается математикой.На русском языке публикуется впервые.
На протяжении многих веков симметрия оставалась ключевым понятием для художников, архитекторов и музыкантов, однако в XX веке ее глубинный смысл оценили также физики и математики. Именно симметрия сегодня лежит в основе таких фундаментальных физических и космологических теорий, как теория относительности, квантовая механика и теория струн. Начиная с древнего Вавилона и заканчивая самыми передовыми рубежами современной науки Иэн Стюарт, британский математик с мировым именем, прослеживает пути изучения симметрии и открытия ее основополагающих законов.
Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике.
«Чёрная Маска из Аль-Джебры» — продолжение сказки «Три дня в Карликании», вышедшей в 1964 году в издательстве «Детская литература».Действие сказки происходит в соседнем с Карликанией государстве Аль-Джебре.Житель Арифметического государства Нулик случайно очутился у входа в таинственную пещеру. Здесь он увидел странное существо в чёрной маске. Незнакомец сообщает Нулику, что он заколдован и обречён носить маску до тех пор, пока его не расколдуют.Но Нулик ещё слишком мал для такого серьёзного дела. Поэтому он вызывает в Карликанию своих друзей.Ребята попадают в незнакомую им страну Аль-Джебру.