Фрактальная геометрия природы - [9]
В некоторых областях физики мое утверждение о важности размерности D было принято с исключительной готовностью. Более того, многие ученые, работающие в этих областях, сознавая неадекватность обычной размерности, уже пытались вести поиски в этом направлении, получая в результате всевозможные дробные, аномальные, либо непрерывные размерности. К сожалению, эти поиски никак не были связаны друг с другом. К тому же в некоторых случаях различные размерности определялись одинаково, ни одна из них не могла похвастать наличием математического теоретического обоснования, и ни одна не была должным образом разработана, так как из-за отсутствия математического обоснования эти размерности невозможно было отличить друг от друга. Для тех разработок, которые будут описаны ниже, существование математической теории жизненно необходимо.
МАТЕМАТИЧЕСКОЕ ИССЛЕДОВАНИЕ ФОРМЫ - ЭТО НЕ ТОЛЬКО ТОПОЛОГИЯ
Если вы спросите у математика, какая четко определенная область математики имеет дело с формами, он почти наверняка упомянет топологию. Топология, безусловно, имеет к нашим целям самое непосредственное отношение — мы даже упоминали о ней в предыдущей главе, — однако в настоящем эссе выдвигается и защищается утверждение, что довольно расплывчатое понятие формы содержит не только топологические, но и другие математические аспекты.
Топология, которую раньше называли геометрией местоположений или analysis situs1 (греческое слово переводится как «место» или «положение»), полагает, что все горшки с двумя ручками имеют одинаковую форму, так как если бы они обладали неограниченной гибкостью и сжимаемостью, то можно было бы из одного горшка вылепить любой другой, причем непрерывным образом, не делая никаких новых отверстий и не закрывая старых. Топология также учит, что форма береговой линии любого острова идентична форме береговой линии любого другого острова, поскольку все такие линии топологически идентичны дружности. Топологическая размерность береговой линии равна топо- логической размерности окружности, и обе они равны 1. Если добавить острову несколько не соприкасающихся с ним «спутников», то совокупная береговая линия получившегося архипелага будет топологически идентична совокупности нескольких окружностей. Таким образом, топология не видит разницы между различными береговыми линиями.
В главе 5 показано, что различные береговые линии имеют, как правило, различные фрактальные размерности. Различия между фрактальными размерностями обусловлены различиями между нетопологическими аспектами формы, которые я предлагаю назвать фрактальными.
Большинство действительно важных и интересных задач сложным образом сочетают в себе фрактальный и топологический аспекты формы.
Заметим, что в топологии определения собственно поля и размерности D>T развивались параллельно, а понятие фрактальной размерности D появилось на полвека раньше настоящего исследования в области фрактальных форм.
Кстати, из-за того, что некий класс топологических пространств носит имя Феликса Хаусдорфа, широко используемый для обозначения размерности D термин «хаусдорфова размерность» может быть воспринят как сокращение от «размерности хаусдорфова пространства», создавая тем самым впечатление, что D является топологическим понятием — это абсолютно не так. Вот вам еще одна причина, почему я предпочитаю термин фрактальная размерность.
ЭФФЕКТИВНАЯ РАЗМЕРНОСТЬ
Помимо математических идей, лежащих в основе размерностей D>T и D, я часто прибегаю к помощи эффективной размерности — понятия, которому не следует давать точного определения. Это мощное интуитивное понятие представляет собой возврат к древнегреческой пифагорейской геометрии. Новизна заключается в том, что в настоящем эссе значение эффективной размерности может быть дробным.
Эффективная размерность выражает соотношение между математическими множествами и естественными объектами. Строго говоря, все физические объекты — такие, например, как вуаль, нить или маленький шарик — должны быть представлены трехмерными телами. Однако физики предпочитают считать, что вуаль имеет размерность 2, а размерности нити и шарика равны соответственно 1 и 0 (при условии, разумеется, что и вуаль, и нить, и шарик достаточно малы). Например, для описания нити относящиеся к множествам с размерностями 1 или 3 теории должны быть соответствующим образом скорректированы с помощью поправочных членов. После этого строится более точная геометричеcкая модель, требующая меньших поправок. Если повезет, такая модель оказывается верной даже без учета поправок. Иными словами, эффективная размерность неизбежно опирается на субъективный фундамент; она обусловлена приближением и, как следствие, степенью разрешения.
ЭФФЕКТИВНЫЕ РАЗМЕРНОСТИ, СКРЫТЫЕ В СКРУЧЕННОМ ИЗ НИТИ ШАРЕ
Для подтверждения последнего заявления скрутим из толстой нити диаметром 1 мм шар диаметром 10 см и рассмотрим скрытые в таком клубке эффективные размерности.
Удаленному наблюдателю наш клубок покажется фигурой с нулевой размерностью, т. е. точкой. (Да что там клубок! — еще Блез Паскаль и средневековые философы утверждали, что в космическом масштабе весь наш мир есть не более, чем точка!) С расстояния в 10 см шар из нитей выглядит как трехмерное тело, а с расстояния в 10 мм — как беспорядочное переплетение одномерных нитей. На расстоянии в 0,1 мм каждая нить превратится в толстую колонну, а вся структура целиком опять станет трехмерным телом. На расстоянии 0, 01 мм колонны превратятся в переплетение волокон — шар снова станет одномерным. При дальнейшем приближении процесс становится периодическим — размерность наблюдаемой фигуры переключается с одного значения на другое и наоборот. Наконец, когда клубок превратится в скопление, состоящее из какого-то конечного числа точек, имеющих размеры порядка атомных, его размерность снова становится равной нулю. Похожую последовательность смены размерностей можно наблюдать при разглядывании листа бумаги.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.