Фрактальная геометрия природы - [8]
Переходя от размерностей математических множеств к «эффективным» размерностям моделируемых этими множествами физических объектов, мы встречаемся с другой двусмысленностью, неизбежной и реально необходимой. И математические, и физические аспекты понятия размерности вкратце предваряются в данной главе.
ОПРЕДЕЛЕНИЕ ТЕРМИНА «ФРАКТАЛЬНЫЙ»
В нижеследующем тексте используются не определенные ранее математические термины, однако многие читатели, возможно, сочтут этот отрывок полезным для себя или хотя бы просто занимательным. Остальные же вольны его пропустить.
Это и последующие отступления от основной линии настоящего эссе я буду помечать особыми скобками — < и >. Последний символ намеренно сделан более заметным, чтобы любой затерявшийся в отступлениях и желающий двигаться дальше читатель мог с легкостью его найти. Открывающая скобка не столь привлекает внимание: мне не хотелось, чтобы отступления слишком сильно выделялись в тексте. В отступлениях часто можно встретить предварительное упоминание материала, обсуждаемого в последующих главах.
< Размерностную несогласованность основных фракталов можно использовать для трансформации интуитивного понятия фрактала в строго математическое. Я решил сосредоточиться на двух определениях, каждое из которых ставит в соответствие всякому множеству в евклидовом пространстве — каким бы «патологическим» оно ни выглядело — некое вещественное число, которое и с интуитивной, и с формальной точки зрения имеет полное право называться размерностью этого множества. Более неформальным из двух является определение топологической размерности по Брауэру, Лебегу, Менгеру и Урысону. Эта размерность описана в соответствующем разделе главы 41. Обозначим ее через D>T Определение второй размерности было сформулировано Хаусдорфом в [203] и приведено в окончательный вид Безиковичем. Ее описание можно найти в главе 39, а обозначать ее мы будем через D.
< В евклидовом пространстве R>E величины размерностей D>T и D заключены в промежутке от 0 до E. Однако на этом их сходство заканчивается. Размерность D>T всегда является целым числом, в то время как для размерности D это вовсе не обязательно. Эти две размерности не обязательно должны совпадать, они должны лишь удовлетворять неравенству Спилрайна (см. [231], глава 4)
D≤D>T
В случае евклидовых множеств D=D>T. Однако почти для всех множеств в этой книге D>D>T. Такие множества необходимо было как-то называть, поэтому я придумал термин фрактал, определив его следующим образом:
< Фракталом называется множество, размерность Хаусдор- фа-Безиковича для которого строго больше его топологической размерности.
< Любое множество с нецелым значением D является фракталом. Например, исходное канторово множество представляет собой фрактал, поскольку, как мы увидим в главе 8, его размерность
D=ln2/ln3≈0,6309>0, при D>T=0.
Канторово множество в пространстве R>E можно обобщить так, чтобы D>T=0, a D принимала бы любые желаемые значения в промежутке от 0 до E (включительно).
< Фракталом является и исходная кривая Коха, поскольку, как будет показано в главе 6, ее размерность
D=ln4/ln3≈1,2618>1, при D>T=1.
< Фрактал может иметь и целочисленную размерность. Например, в главе 25 показано, что траектория броуновского движения представляет собой фрактал, так как ее размерность
D=2, при D>T=1.
< Тот поразительный факт, что размерность D не должна непременно быть целым числом, заслуживает некоторого терминологического отступления. Если понимать термин «дробь»1 в широком смысле, т.е. как синоним термина «нецелое вещественное число», то некоторые из вышеперечисленных значений размерности D являются дробными — размерность Хаусдорфа-Безиковича иногда даже называют дробной размерностью. Однако учитывая, что D может принимать и целые значения (меньшие, чем E, но строго большие, чем D>T), я предпочитаю называть величину D фрактальной размерностью. ►
ФРАКТАЛЫ В ГАРМОНИЧЕСКОМ АНАЛИЗЕ
< Исследование фракталов частично затрагивает и геометрический аспект гармонического анализа, однако в настоящем труде этот факт не слишком подчеркивается. Большинству читателей гармонический анализ (иначе называемый спектральным или анализом Фурье) мало известен, а многие из тех, кто эффективно используют его на практике, мало знакомы с его фундаментальными структурами.
Кроме того, каждый из этих подходов — и фрактальный, и спектральный — имеет свои характерные особенности и свою прелесть, которые лучше постигать на своем собственном опыте. И наконец, на мой взгляд, по сравнению с гармоническим анализом фракталы просты и интуитивно понятны. ►
О «ПОНЯТИЯХ, КОТОРЫЕ ... НОВЫ, НО ... »
В свое время Лебег немало потешался над некоторыми «понятиями, которые, безусловно, новы, но абсолютно бесполезны». К размерности D эту характеристику никто не применял, однако ее использование было ограничено весьма узким кругом областей, причем все эти области относились к чистой математике. Я, пожалуй, был первым, кто успешно применил размерность D к описанию Природы. Одной из важнейших целей моей работы является закрепление за размерностью D центрального места в эмпирической науке и демонстрация таким образом того, что размерность эта обладает гораздо более широкой применимостью, чем кто-либо может себе представить.
Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.
Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.
«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».
Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.
В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.