Фрактальная геометрия природы - [47]

Шрифт
Интервал

, а не 10>22, как в реальном мире».

В терминах, вводимых в главе 34, вселенная с D=1 и N=10>22 обладает очень низкой лакунарностью, но чрезвычайно стратифицирована.

Если мы попытаемся передать рис. 141 в точном масштабе, то его не только будет очень сложно напечатать и рассмотреть, он еще и окажется способен ввести зрителя в заблуждение. В самом деле, на нем изображена вовсе не Вселенная с размерностью D=1, а всего лишь ее проекция на плоскость, причем размерность этой проекции равна D=ln5/ln7~0,8270<1. Поэтому, дабы не оставить ложного впечатления, спешим представить регулярную плоскую конструкцию в духе Фурнье с размерностью D=1 и коэффициентом подобия 1/r=5 вместо 1/r=7. Построение продолжено на один этап дальше, чем это возможно на рис. 141.

10 ГЕОМЕТРИЯ ТУРБУЛЕНТНОСТИ; ПЕРЕМЕЖАЕМОСТЬ

Исследование турбулентности — одна из старейших, сложнейших и наиболее неблагодарных глав в истории физики. Простого здравого смысла и кое-какого опыта достаточно, чтобы показать, что в одних условиях поток газа или жидкости остается гладким (в специальной терминологии — «ламинарным»), а в других — нет. Вот только где провести границу? Следует ли обозначать термином «турбулентность» все негладкие потоки, включая большую часть метеорологических и океанографических феноменов? Или лучше будет сузить значение этого термина до какого-то одного класса, и если да, то до какого? Создается впечатление, что у каждого ученого имеются собственные ответы на эти вопросы.


К счастью, нам не нужно разбираться здесь с этими расхождениями во мнениях, так как мы намерены заниматься лишь бесспорно турбулентными потоками, самой заметной характеристикой которых является полное отсутствие сколько-нибудь определенного масштаба длины: в рамках одного процесса соседствуют «вихри» всевозможных размеров. Эта характерная черта хорошо видна на рисунках Леонардо и Хокусая. Она указывает на то, что турбулентность глубоко чужда духу «старой» физики, которая имела дело лишь с явлениями, имеющими вполне определенный масштаб. И та же самая причина включает изучение турбулентности в круг наших непосредственных интересов.

Кому-то из читателей, наверное, известно, что практически все исследователи турбулентности сосредоточивались на аналитическом рассмотрении потока жидкости, совершенно не касаясь геометрической стороны проблемы. Хочется верить, что эта несбалансированность не отражает предубежденного отношения к геометрии. По сути дела, многие геометрические формы, участвующие в турбулентности, легко увидеть или сделать видимыми, и они прямо-таки напрашиваются на надлежащее описание. Однако им не удавалось привлечь к себе заслуженного внимания до появления фрактальной геометрии. Потому что, как я с самого начала и предполагал, турбулентность включает в себя множество фрактальных аспектов; о некоторых из них мы поговорим в этой и последующих главах.

Здесь необходимо сделать две оговорки. Во-первых, мы оставим в стороне проблему возникновения турбулентности в ламинарном потоке. У меня есть серьезные основания полагать, что в это возникновение также вовлечены некоторые, весьма важные, фрактальные моменты, однако они еще недостаточно разъяснены и поэтому их еще рано обсуждать здесь. Во-вторых, мы не намерены затрагивать такие периодические структуры, как ячейки Бенара и дорожки Кармана.

Начинается глава с призывов о более геометрическом подходе к турбулентности и об использовании при ее исследовании фракталов. Призывы эти многочисленны, но весьма кратки, так как включают в себя в основном предположения с очень небольшим (пока) количеством практических результатов.

После этого мы сосредоточимся на проблеме перемежаемости, которую я довольно активно исследовал. Самый важный из моих выводов состоит в том, что область рассеяния, т. е. пространственное множество, на котором концентрируется турбулентное рассеяние, может быть смоделировано фракталом. Из произведенных с различными целями измерений можно заключить, что размерность D этой области лежит где-то в районе 2,5-2,6, но, вероятно, не превышает 2,66.

К сожалению, у нас не получится построить точную модель, пока мы не определим топологические свойства области рассеяния. В частности, представляет ли она собой пыль, извилистую разветвленную кривую (вихревую трубу) или волнистую слоистую поверхность (вихревой лист)? Первое предположение маловероятно, а второе и третье предполагают модели, похожие на разветвленные фракталы из главы 14. Однако принять такое решение мы с вами пока не можем. Прогресс на новом фрактальном фронте никак не помогает нам разобраться с фронтом старым, топологическим. Наши знания о геометрии турбулентности все еще пребывают в зачаточном состоянии.

Большая часть материала этой главы не требует какой-либо специальной подготовки. < Но специалист наверняка заметит, что часть фрактального анализа турбулентности представляет собой геометрический аналог аналитического анализа корреляций и спектров. Отношения между теориями турбулентности и вероятности — старая история. В самом деле, самые первые исследования Дж. И. Тейлора оказались вторым по значимости (после броуновского движения Перрена) фактором, оказавшим серьезное влияние на создание Норбертом Винером математической теории стохастических процессов. Спектральный анализ уже давно вернул (даже с процентами) все, что он «занимал» в тогдашних исследованиях турбулентности. Настало время и для теории турбулентности воспользоваться достижениями современной стохастической геометрии. В частности, спектр Колмогорова имеет геометрический аналог, который мы рассмотрим в главе 30. ►


Рекомендуем почитать
Легенда о Вавилоне

Петр Ильинский, уроженец С.-Петербурга, выпускник МГУ, много лет работал в Гарвардском университете, в настоящее время живет в Бостоне. Автор многочисленных научных статей, патентов, трех книг и нескольких десятков эссе на культурные, политические и исторические темы в печатной и интернет-прессе США, Европы и России. «Легенда о Вавилоне» — книга не только о более чем двухтысячелетней истории Вавилона и породившей его месопотамской цивилизации, но главным образом об отражении этой истории в библейских текстах и культурных образах, присущих как прошлому, так и настоящему.


Открытия и гипотезы, 2005 №11

Научно-популярный журнал «Открытия и гипотезы» представляет свежий взгляд на самые главные загадки вселенной и человечества, его проблемы и открытия. Никогда еще наука не была такой интересной. Представлены теоретические и практические материалы.


Жители планет

«Что такое на тех отдаленных светилах? Имеются ли достаточные основания предполагать, что и другие миры населены подобно нашему, и если жизнь есть на тех небесных землях, как на нашей подлунной, то похожа ли она на нашу жизнь? Одним словом, обитаемы ли другие миры, и, если обитаемы, жители их похожи ли на нас?».


Знание-сила, 2000 № 07 (877)

Ежемесячный научно-популярный и научно-художественный журнал.


Меч и Грааль

Взыскание Святого Грааля, — именно так, красиво и архаично, называют неповторимое явление средневековой духовной культуры Европы, породившее шедевры рыцарских романов и поэм о многовековых поисках чудесной лучезарной чаши, в которую, по преданию, ангелы собрали кровь, истекшую из ран Христа во время крестных мук на Голгофе. В некоторых преданиях Грааль — это ниспавший с неба волшебный камень… Рыцари Грааля ещё в старых текстах именуются храмовниками, тамплиерами. История этого католического ордена, основанного во времена Крестовых походов и уничтоженного в начале XIV века, овеяна легендами.


Популярно о микробиологии

В занимательной и доступной форме автор вводит читателя в удивительный мир микробиологии. Вы узнаете об истории открытия микроорганизмов и их жизнедеятельности. О том, что известно современной науке о морфологии, методах обнаружения, культивирования и хранения микробов, об их роли в поддержании жизни на нашей планете. О перспективах разработок новых технологий, применение которых может сыграть важную роль в решении многих глобальных проблем, стоящих перед человечеством.Книга предназначена широкому кругу читателей, всем, кто интересуется вопросами современной микробиологии и биотехнологии.