Фотоны и ядра - [23]

Шрифт
Интервал

В зависимости от того, какие материалы или ткани подлежат исследованию, целесообразно применять иногда более жесткое (т. е. более проникающее), а иногда и совсем мягкое излучение. Главная задача — достигнуть контрастности: надо увидеть дефект, который даже незначительно отличается по плотности от основного материала.

Закон поглощения рентгеновских лучей, как и закон поглощения любого излучения, достаточно очевиден. Нас интересует, как изменится интенсивность луча (напомним, что интенсивность — это энергия, отнесенная к единице времени и единице площади) после прохождения пластинки толщиной d. Так как я пишу эту книгу для читателя, который не знает интегрального исчисления, то мне придется ограничиться формулировкой этого закона для прохождения лучом пластинок малой толщины. Толщина «мала» в том случае, если интенсивность падает незначительно, скажем на 1 %. Для такого примера закон прост: доля поглощенного излучения прямо пропорциональна толщине пластинки. Если интенсивность уменьшилась от значения I>0 до значения I, то это простое правило запишется так:

(II>0) = μ∙d

Коэффициент пропорциональности μ носит название коэффициента поглощения.

А вот простой вопрос, который я много раз задавал на экзаменах: в каких единицах измеряется, коэффициент поглощения? Сообразить нетрудно. Единицы измерения с обеих сторон равенства должны быть одинаковы. Это ведь ясно. Нельзя же сказать, что больше, 10 кг или 5 м. Сравнивать, можно килограммы с килограммами, амперы о амперами, эрга в эргами. Значит, в любом равенстве справа и слева должны стаять числа, выражаемые в одних ж тех же единицах.

Но в левой части нашего равенства записана так называемая безразмерная величина. Сказав, что доля поглощения излучения равна 1/30 или 0,08, мы этим все сказали. Единицы измерения «сократились» при делении интенсивности на интенсивность. Но если так, то и с правой стороны равенствах должна стоять безразмерная величина. Так как толщины измеряются в сантиметрах (или других единицах длины), то коэффициент поглощения выражается в обратных сантиметрах т. е. в см>-1.

Допустим, что луч проходит через пластину толщиной 10 см, терян лишь 1?% интенсивности. Левая часть равенства равна 1/100. Значит, в этом примере коэффициент поглощения равен 0,001 см>-1. А вот если лучи мягкие и теряют процент энергии, уже пройдя через фольгу толщиной в микрометр (0,0001 см), то коэффициент поглощения будет равен 100 см>-1.

Физики не- располагают хорошей теорией для установлении формулы коэффициента поглощения. Укажу лишь, что коэффициент поглощения примерно пропорционален кубу длины волны рентгеновского излучения и кубу атомного номера вещества, через которое луч проходит.

Поскольку длины волн рентгеновских лучей весьма малы, то частоты колебания электромагнитных волн велики. Эта значит, что рентгеновский квант hv несет большую энергию. Этой энергии не только достаточно для химических реакций, приводящих к почернению эмульсии фотопластинки и к созданию свечения фосфоресцирующих экранов (на это способны и световые лучи), но ее с избытком хватает и на то, чтобы разрушать молекулы. Другими словами, рентгеновские лучи ионизуют воздух и другие среды; через которые они проходят.

Теперь несколько слов о гамма-лучах. Этот термин мы используем, когда речь идет о коротковолновом излучении, возникающем при радиоактивном распаде. Забегая вперед, скажем, что гамма-лучи исходят из естественных радиоактивных веществ и создаются искусственными элементами. В ядерном реакторе, конечно, возникает гамма-излучение. Сильные и очень жесткие гамма-лучи возникают при взрыве атомной бомбы.

Ввиду того, что гамма-лучи могут иметь очень малую длину волны, коэффициент их поглощения может быть очень малым. Так, например, гамма-лучи, которые излучаются при распаде радиоактивного кобальта, способны пройти через десятки сантиметров стали.

Коротковолновое электромагнитное излучение, способное разрушать молекулы, в существенных дозах очень опасно для организма. Поэтому от рентгеновских и гамма-лучей нужна защита. Чаще всего для этой цели используют свинец. Стены рентгеновских кабинетов покрывают специальной штукатуркой, содержащей соли бария.

Гамма-лучи, так же как и рентгеновские, могут быть использованы для просвечивания. Обычно прибегают к гамма-лучам радиоактивных веществ, которые являются «золой» ядерного горючего. Их достоинством по сравнению с рентгеновскими лучами является большая проникающая способность, но главное — это возможность использовать в качестве источника излучения маленькую ампулку, которую можно поместить в места, недоступные для рентгеновской трубки.


РЕНТГЕНОСТРУКТУРНЫЙ АНАЛИЗ

В 1912 г. Рентген был руководителем кафедры физики Мюнхенского университета. Проблемы, касающиеся природы икс-лучей, обсуждались на этой кафедре неустанно. Надо сказать, что Рентген, будучи сам физиком-экспериментатором, относился с большим уважением к теории. На кафедре физики Мюнхенского университета трудилось много талантливых теоретиков, которые ломали себе голову над тем, что представляют собой рентгеновские лучи.


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Предисловие к русскому изданию книги «Парапсихология» (Ч.Хэнзел)

…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.