Фотоны и ядра - [21]

Шрифт
Интервал

Единица освещенности — люкс. Такую освещенность создает поток света, равный 1 лм, на площади в 1 м>2.

Освещенность в безлунную ночь равна 0,0003 лк. Так что когда мы говорим: «ни зги не видно», то определяем освещенность, этой самой «зги». В лунную ночь освещенность равна — 0,2 лк. Чтобы читать, не напрягая глаз, требуется освещенность 30 лк. При киносъемке включают мощные прожекторы и доводят освещенность предметов до 10 000 лк.

Но мы ничего еще не сказали о приборах, которые служат для измерения, световых потоков и освещенностей. В настоящее время такие измерения — не проблема. Фактически мы действуем именно так, как надо было бы поступить, дав новое определение канделы. Мы измеряем энергию, падающую на фотоэлемент, а шкалу фотоэлемента градуируем в люксах с учетом кривой видности.

Существовавшие в прошлом веке фотометры работали по принципу сравнения яркостей двух освещенных смежных площадок. На одну из них падал свет, силу которого мы хотели измерить. С помощью нехитрых приспособлений световой поток уменьшали в известное число раз так, чтобы в конце концов смежные площадки были освещены одинаково.


ГОЛОГРАФИЯ

Создание лазеров знаменует новую эпоху в развитии науки и техники. Трудно найти такую область знания, в которой стимулированное излучение не открыло бы новые возможности.

В 1947 г. Д. Габор предложил использовать когерентный свет для получения изображения объекта совершенно новым способом. Новая техника, получившая название голографии, коренным, образом отличается от фотографии. Голография становится возможной только лишь благодаря особенностям стимулированного излучения, отличающим его от обычного света.

Еще раз подчеркнем, что при лазерном излучении почти все фотоны совпадают по всем своим признакам — частоте, фазе, поляризации и направлению распространения. Лазерный луч размывается в ничтожной степени, т. е. можно получить чрезвычайно тонкий луч на больших расстояниях от источника, лазерному лучу свойственна очень большая когерентная длина (длина цуга волн). Благодаря последнему обстоятельству (оно-то и важно для голографии) возможна интерференция расщепленных лучей с большой разностью хода.

Верхняя часть рис. 2.9 поясняет технику получения голограммы.



Наблюдаемый объект освещается широким несильным (чтобы не повредить объект) лазерным лучом. Один и тот же луч рассеивается объектом и отражается зеркалом, которое создает так называемую опорную волну. Две волны накладываются. Происходит интерференция, картина которой фиксируется фотопластинкой.

Взгляните на рис. 2.10.



Сверху показан объект, а под ним — его «изображение». Мы не оговорились: эта сложная комбинация темных и светлых колец, называемая голограммой, действительно является изображением объекта, но только изображением скрытым. Голограмма содержит полную информацию об объекте, точнее — полные сведения об электромагнитной волне, рассеянной шахматными фигурками. Фотография не содержит таких всеобъемлющих сведений. Лучший фотоснимок точно передает все сведения об интенсивности рассеянных лучей. Но ведь волна, рассеянная любой точкой объекта, полностью характеризуется не только своей интенсивностью (амплитудой), но и фазой. Голограмма — это интерференционная картина, и каждая светлая или темная линия говорит нам не только об интенсивности, но и о фазе лучей, пришедших от объекта в соответствующие места фотопластинки.

Как и любую фотопластинку, голограмму проявляют, закрепляют и хранят сколько угодно времени. Когда нам захочется полюбоваться на снятый объект, мы облучим, как это показано на нижней части рис. 2.9, голограмму светом того же лазера, восстановив геометрическое расположение, имевшее место при съемке: луч лазера направим так, как шел луч, отраженный от зеркала. Тогда там, где находился объект, возникнет изображение предмета, в идеале тождественное той картине, которую видел глаз.

Теории получения голограммы мы не можем касаться. Основная идея состоит в том, что при освещении голограммы возникают рассеянные волны, обладающие теми же амплитудами и фазами, которые создали эту голограмму. Эти волны складываются в волновой фронт, тождественный тому волновому фронту, который создал голограмму. Происходит своеобразная реконструкция волны при освещении голограммы в тех же условиях, в которых освещался объект. Благодаря этому создается изображение объекта.

Исследования в области голографии продолжаются. Сейчас имеется возможность получать цветные изображения. Возможно улучшить результаты, снимая несколько голограмм с разных позиций. Наконец (и это, пожалуй, самое важное), оказывается, что можно рассматривать голограммы, не прибегая к лазеру.

Имеются книги, трактующие предмет голографии в деталях. Голография заслуживает внимания по той причине, что является очень емким способом хранения трехмерной информации об объекте. Последнее слово в этой области еще не сказано, и будущее покажет в какой мере, голография войдет в быт и в технику.

Глава 3

Жесткое электромагнитное излучение

ОТКРЫТИЕ РЕНТГЕНОВСКИХ ЛУЧЕЙ

К рентгеновским лучам относят излучение, занимающее участок электромагнитного спектра примерно от нескольких десятков до сотых долей нанометра. Еще более жесткие, т. е. более коротковолновые лучи называются гамма-лучами.


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Предисловие к русскому изданию книги «Парапсихология» (Ч.Хэнзел)

…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.