Фотоны и ядра - [18]
Широко распространен этот метод в оптической промышленности. Если, скажем, нужно проверить качество поверхности стеклянной пластинки, то это делается рассмотрением полос равной толщины воздушного клина, создаваемого испытуемой пластинкой с идеально плоской поверхностью. Если прижать эти две пластинки с одного края, то образуется воздушный клин. Если обе поверхности плоские, то линии равной толщины будут параллельными прямыми.
Представим себе, что на испытуемой пластинке имеется впадина или бугор. Тогда линии равной толщины искривятся и будут обходить дефектное место. При изменении угла падения света полосы движутся в ту или другую сторону в зависимости от того, бугром или впадиной является дефект. На рис. 2.6 показано, как выглядит поле микроскопа в этих случаях. Оба рисунка соответствуют дефектным образцам. У первого дефект расположен справа у самого края, а у второго — слева.
Точные измерения показателей преломления вещества могут быть проделаны при помощи интерференционных рефрактометров. В этих приборах наблюдается интерференция между двумя лучами, которые по возможности отдалены друг, от друга.
Положим, что на пути одного из лучей установлено тело длиной l и с показателем преломления n. Если показатель преломления среды есть n>0, то оптическая разность хода изменится на Δ = l∙(n — n>0). Два луча сводят в одну, точку при помощи фокусирующей линзы. Какую же картину будем мы наблюдать в зрительной трубе? Систему светлых и темных полос. Но это не полосы равной толщины, которые видны невооруженным глазом. Система полос, возникающая, в рефрактометре, имеет другое происхождение. Ведь исходный пучок света не идеально параллельному, а слегка расходящийся. Значит, падать на пластинку лучи, составляющие конус, будут под слегка разными углами.
Интерференционные события будут проходить одинаково у лучей одинакового наклона. Они и соберутся в одном месте фокальной плоскости зрительной трубы. Если разность хода между расщепленными частями пучка будет меняться, то полосы придут в движение. При изменении разности хода на величину Δ через окуляр трубы пройдут Δ/λ, полос.
Точность метода очень велика, ибо смещение в 0,1 полосы улавливается без труда. При таком смещении Δ = 0,1∙λ = 0,5∙10>-5 см, что на длине l = 10 см позволит зафиксировать изменение показателя преломления на 0,5∙10>-6.
Необходимо рассказать теперь об интерферометре другого типа, не использующего явление преломления. Это интерферометр, созданный американским физиком Альбертом Майкельсоном (1852–1931). Трудно переоценить ту роль, которую он сыграл в истории физики (я рискну даже на более сильное утверждение: в истории человеческой мысли). С помощью этого интерферометра был впервые установлен факт исключительной важности: скорость света в направлениях вдоль и поперек земной орбиты одинакова. Это значит, что скорость света не складывается со скоростью движения лампы, дающей световую вспышку, по тем правилам, по которым складывается скорость пули со скоростью сдвижения стрелка с ружьем. Открытие этого замечательного факта привело к становлению теории относительности, к коренному пересмотру смысла основных научных понятий — длины, времени, массы, энергии. Но об этом речь у нас впереди. А об интерферометре Мендельсона нам стоит поговорить сейчас, так как его значимость определяется не только местом, занимаемым в истории физики, но и тем, что до сего времени простые принципы, лежащие в основе его конструкции, используются для измерения длин и расстояний.
В этом приборе параллельный пучок монохроматического света падает на плоскопараллельную пластинку P>1 (рис. 2.7), покрытую со штрихованной стороны полу прозрачным слоем серебра. Эта пластинка поставлена под углом 45° к падающему от источника лучу и делит его на два, один из которых идет параллельно падающему лучу (к зеркалу M>1), а другой — перпендикулярно (к зеркалу М>2).
Разделенные лучи падают на оба зеркала перпендикулярно и возвращаются в те самые места полупрозрачной пластинки, из которых они вышли. Каждый луч, вернувшийся от зеркала, повторно расщепляется на пластинке. Часть света возвращается в источник, а другая часть поступает в зрительную трубу. На рисунке видно, что луч, идущий от зеркала, стоящего напротив трубы, три раза проходит через стеклянную пластинку с полупрозрачным слоем. Поэтому для обеспечения равенства оптических путей луч, идущий от зеркала М>1, пропускается через компенсационную пластинку P>2, идентичную первой, но без полупрозрачного слоя.
В поле зрения трубы будут наблюдаться круговые кольца, соответствующие интерференции в воздушном слое (толщина которого равна разности расстояний зеркал от места расщепления лучей) первичных лучей, образующих конус. Перемещение одного из зеркал (например, зеркала М>2 в положение, показанное пунктиром) на четверть длины волны будет соответствовать переходу от максимума к минимуму, т. е. вызовет смещение картины на полкольца. Это может быть отчетливо отмечено наблюдателем. Таким образом, в фиолетовых лучах чувствительность интерферометра больше чем 100 нм.
Появление на сцене лазеров произвело революцию в технике интерферометрии.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.
Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.
…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…
В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.
Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.