Фотоны и ядра - [17]

Шрифт
Интервал

Решение проблемы исключительно красиво и в то же время крайне просто, как большинство оригинальных идей: надо заставить излучение атома складываться с самим собой! А для этого требуется расщепить луч, идущий от каждого источника, на две части, заставить эти две части одного луча пройти разные пути, а затем уже свести в одну точку. Вот при этом условии мы, наблюдая интерференцию и меняя разности путей частей расщепленного луча, и вправду можем измерить интересующие пас перемещение и длину, подсчитывая число чередований света и темноты.

Мы описали принцип, лежащий в основе интерферометрических измерений, открытый еще в 1815 г. французским физиком Огюстеном Френелем (1788–1827). Рассмотрим теперь способы, лежащие в основе действия интерферометров, с помощью которых расщепляют луч и создают разности хода между расщепленными частями луча.

Остановимся поподробней на интерференции лучей света, отраженных от внешней и внутренней сторон прозрачной пластинки или пленки. Явление заслуживает внимания как по своей практической значимости, так и потому, что наблюдается в природе. Кроме того, на этом примере легко уясняются многие важные понятия, которыми мы пользуемся при описании световых и других электромагнитных волн.

Рис. 2.5 позволяет вычислить сдвиг фаз между такими двумя лучами. Разность фаз определяется разностью хода, т. е. разностью путей, пройденных двумя лучами.



Как видно из чертежа, разность хода x = 2d∙cos r. Но как перейти от разности хода лучей к разности фаз, которая определяет, будут ли две волны усиливать или ослаблять друг друга?

Поговорим с читателем, которого не пугает формула косинуса. Колебание светового вектора в любой точке пространства, можно записать следующим образом: A cos 2π∙vt. Сдвиг по фазе, на угол φ означает необходимость добавления этого угла к аргументу косинуса. Если мы хотим сравнить фазы точек одной и той же волны, разделенных расстоянием х, то нам надо учесть, сколько длин волн укладывается на этом участке, и полученное число умножить на 2π. Эта величина и будет фазовым сдвигом. Итак, φ = 2π∙x/λ.

Теперь вернемся к интерференции лучей в пластинке. Выражение для разности хода мы записали. Значит, остается лишь поделить эту величину на λ. Но… стоп. Кто нам сказал, что длина волны света в пустоте и внутри прозрачной пластинки одинакова? Напротив, у нас есть все основания подозревать, что с волной что-то происходит, когда она переходит из одной среды в другую. Ведь существует явление дисперсии: фотоны разной частоты ведут себя по-разному. Частота, длина волны и скорость ее распространения, связаны равенством c = vλ. Какие же из этих величин меняются, когда волна попадает в другую среду? На этот вопрос отвечает опыт.

Можно непосредственно измерить скорость распространения волны в теле и убедиться в том, что показатель преломления, заставляющий волну изменять направление своего движения при косом падении на поверхность раздела двух сред, равен отношению скоростей распространения света в них. В случае, если одна из сред — воздух (точнее — вакуум),

c/v.

где с — принятое обозначение скорости света в пустоте, a v — скорость распространения в среде. Ну, а дальше? Какой из двух параметров — частота или длина волны — меняется при переходе света из воздуха в среду? Чтобы объяснить результаты интерференционных опытов, необходимо предположить, что частота фотона остается неизменной, а длина волны меняется. Поэтому для показателя преломления справедлива также формула

n = λ>0/λ,

где λ>0— длина волны в воздухе.

Вот теперь мы уже знаем всё, для того чтобы записать разность фаз между лучами в описываемом опыте с пластинкой. Поскольку один из лучей шел в воздухе, а второй — в стекле, то разность фаз будет равна


Что же можно измерить, изучая интерференцию лучей в пластинке? Формула отвечает на этот вопрос. Если известна толщина, то можно определить показатель преломления материала. Если известно значение n, то можно с очень большой точностью (доли длины световой волны) найти толщину, и, наконец, можно измерять длины волн разной «цветности».

Если пластинка имеет переменную толщину, материал ее всюду однороден и угол падения практически одинаков для рассматриваемого участка пластинки, то интерференция будет обнаружена в виде так называемых полос равной толщины. На неровной пластинке возникнет система темных и светлых (или радужных в случае белого света — ведь фотон каждой цветности будет вести себя по-своему) полос, обрисовывающих места равной толщины. В этом состоит объяснение цветных разводов, которые мы так часто видим на пленках нефти или масла, разлитых на воде.

Очень красивые полосы равной толщины легко наблюдать на мыльной пленке. Сделайте проволочную рамку. Опустите ее в мыльный раствор и выньте. Мыло стекает, и в верхней части пленка будет тоньше, чем в нижней. На пленке появятся цветные горизонтальные полосы.

Интерференционный метод широко применяется для измерения малых расстояний или малых изменений расстояний. Он позволяет заметить изменения толщины, меньшие сотых долей длины световой волны. В интерференционных измерениях неровностей на поверхности кристалла удается достигнуть точности порядка 10


Еще от автора Александр Исаакович Китайгородский
Молекулы

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Электроны

«Физика для всех» Л. Д. Ландау и А. И. Китайгородского выпущена в 1978 г. четвертым изданием в виде двух отдельных книг: «Физические тела» (книга 1) и «Молекулы» (книга 2). Книга 3 «Электроны», написанная А. И. Китайгородским, выходит впервые и является продолжением «Физики для всех». В этой книге пойдет речь о явлениях, где на первый план выходит следующий уровень строения вещества — электрическое строение атомов и молекул. В основе электротехники и радиотехники, без которых немыслимо существование современной цивилизации, лежат законы движения и взаимодействия электрических частиц и в первую очередь электронов — квантов электричества. Электрический ток, магнетизм и электромагнитное поле — вот главные темы этой книги.


Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики.Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики.Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.


Как измеряются расстояния между атомами в кристаллах

О рентгеноструктурном анализе атомной структуры кристаллов.


Проблема № 2

Статья о явлении сверхпроводимости из журнала «Техника – молодежи» № 11, 1975.


Предисловие к русскому изданию книги «Парапсихология» (Ч.Хэнзел)

…Борьба против лженауки – это борьба против заблуждений, взятых на вооружение повседневной жизнью. Это борьба против ошибок разума, а не чувств, в отношении которых слово «обман» вообще не имеет смысла…


Рекомендуем почитать
Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Ньютон. Закон всемирного тяготения. Самая притягательная сила природы

Исаак Ньютон возглавил научную революцию, которая в XVII веке охватила западный мир. Ее высшей точкой стала публикация в 1687 году «Математических начал натуральной философии». В этом труде Ньютон показал нам мир, управляемый тремя законами, которые отвечают за движение, и повсеместно действующей силой притяжения. Чтобы составить полное представление об этом уникальном ученом, к перечисленным фундаментальным открытиям необходимо добавить изобретение дифференциального и интегрального исчислений, а также формулировку основных законов оптики.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.


Физические  тела

Переиздание первой части книги Ландау Л. Д. и Китайгородского А. И. «Физика для всех» (Движение, теплота). Цель книги дать читателю в общедоступной форме отчетливое представление об основных идеях и новейших достижениях современной физики. Движение тел рассмотрено с двух точек зрения — наблюдателя в инерциальной и неинерциальной системах координат. Весьма детально изложены закон всемирного тяготения и его применение для расчетов космических скоростей, для интерпретации лунных приливов, для геофизических явлений. Книга рассчитана на самый широкий круг читателей — от впервые знакомящихся с физикой до лиц с высшим образованием, проявляющих интерес к данной науке.