Флатландия. Сферландия - [121]
Переходя от линейного мира к плоскому, мы обнаруживаем, что число различных форм геометрических фигур неизмеримо возросло. Так, в нашем двумерном мире могут существовать не только обитатели, имеющие вид точек и прямолинейных отрезков, но и многочисленные раньше. Точка P будет свободно перемещаться по всей плоскости, явно «не желая» расставаться е двумерным миром, хотя в действительности она принадлежит прямой, способной разместиться лишь в трехмерном пространстве.
Перейдем теперь к рассмотрению знакомых всем нам предметов, а именно предметов, находящихся в трехмерном пространстве. Все формы материи, доступные нашим ощущениям, занимают некоторую часть пространства и обладают длиной, шириной и высотой. Плоскость, прямая и точка существуют в теории лишь для того; чтобы человек мог строить приближенные образы в соответствии с тем, что он наблюдает в материальном мире. Природа действует посредством универсальных законов и строит применительно к условиям, руководствуясь неписаными законами экономии. Прямая и плоскость встречаются в природе исключительно редко, главным образом среди низших форм растений и животных, но человек, пренебрегая более тонкими соображениями, определяющими выбор тех или иных средств в природе, и постоянно совершая ошибки, вынужден достигать своих целей простейшими и наиболее прямыми из доступных ему методов. Поэтому он принимает за единицу длины некий отрезок прямой, за единицу площади — плоскую фигуру, известную под названием квадрата, и за единицу объема — тело, ограниченное шестью гранями и известное под названием куба. Мы видели, что на плоскости квадрат можно построить, перемещая отрезок в перпендикулярном ему направлении на расстояние, равное длине отрезка. Аналогично можно построить и куб в трехмерном пространстве. Представим себе, что квадрат ABА'В' (рис. 3) перемещается па расстояние, равное длине любой из его сторон, в направлении, перпендикулярном плоскости квадрата. В результате такого перемещения мы получим (рис. 7) трехмерную фигуру — куб.
Предположим, что исходный отрезок AB, позволивший нам построить квадрат и куб, мы выбрали длиной в два дюйма. Тогда самому отрезку мы могли бы поставить в соответствие число 2, квадрату — число 2², а кубу — число 2³. Поскольку существуют числа 2⁴, 2>5 и т. д„геометрический смысл которых неизвестен, естественно возникает вопрос: не могут ли эти числа соответствовать неким объектам, восприятие которых лежит за гранью человеческих возможностей, но было бы доступно каким-нибудь высшим существам, если бы таковые обладали соответствующими органами чувств? Человеческий разум не в силах наглядно представить себе четырехмерное пространство, в котором могло бы находиться тело, соответствующее числу 2⁴, но, рассуждая по аналогии, мы в состоянии выяснить несколько интересных фактов относительно фигуры, играющей в четырехмерном пространстве такую же роль, какую в нашем пространстве играет куб.
Мы видели, что: 1) точки ограничивают отрезок прямой; 2) отрезки прямых ограничивают квадрат; 3) квадраты ограничивают куб. Таким образом, в каждом измерении единичная фигура ограничена единичными фигурами на единицу меньшего числа измерений. Следовательно, четырехмерный аналог куба ограничен трехмерными кубами. Строя квадрат, мы передвинули единичный отрезок по кратчайшему пути' из начального положения в конечное, причем длина пути была равна длине самого отрезка. Аналогично куб мы построили, переместив квадрат из начального положения в конечное, отстоящее от начального на расстояние, равное длине стороны квадрата. И в том, и в другом случае движение происходило в направлении, перпендикулярном всем и каждой из границ производящей фигуры.
Отсюда мы заключаем, что и четырехмерный аналог куба можно построить, переместив куб на расстояние, равное длине любого из его ребер, в направлении, перпендикулярном всем ребрам производящего куба. Нашему разуму это направление представляется столь же чуждым и странным, как высота — существу, обитающему в двумерном мире.
При движении отрезка прямой, заметающего квадрат, число границ вновь построенного квадрата было равно удвоенному числу отрезков (исходный отрезок плюс отрезок в конечном положении) плюс два отрезка, порожденные при движении концами исходного отрезка. Аналогично в число граней куба следует включить два квадрата (производящий квадрат в исходном и в конечном положении) плюс четыре квадрата, порожденных при движении четырьмя сторонами исходного квадрата. Отсюда ясно, что в число кубов, ограничивающих четырехмерный аналог куба, должны входить два куба (производящий куб в исходном и в конечном положении) плюс шесть кубов, порожденных при движении гранями исходного куба, то есть всего восемь кубов.
Этот научно‐фантастический роман считается полезным для людей, изучающих такие темы, как, например, понятия о других пространственных измерениях или гиперпространства. Как литературное произведение роман ценится из‐за сатиры на социальную иерархию Викторианского общества.Юмор, причудливая, подчас гротескная литературная форма, множество убедительных математических подробностей двумерного бытия сделали Флатландию необычайно популярной. Ее (наравне с бессмертной «Алисой» Льюиса Кэррола) охотно цитируют авторы серьезных научных трактатов по многомерной геометрии и теории относительности.«это лучшее введение в способ восприятия измерений, которое может быть найдено»Айзек Азимов.
Произведения Э. Эбботта и Д. Бюргера едины по своей тематике. Авторы в увлекательной форме с неизменным юмором вводят читателя в русло важных геометрических идей, таких, как размерность, связность, кривизна, демонстрируя абстрактные объекты в различных «житейских» ситуациях.
Большой Совет планеты Артума обсуждает вопрос об экспедиции на Землю. С одной стороны, на ней имеются явные признаки цивилизации, а с другой — по таким признакам нельзя судить о степени развития общества. Чтобы установить истину, на Землю решили послать двух разведчиков-детективов.
С батискафом случилась авария, и он упал на дно океана. Внутри аппарата находится один человек — Володя Уральцев. У него есть всё: электричество, пища, воздух — нет только связи. И в ожидании спасения он боится одного: что сойдет с ума раньше, чем его найдут спасатели.
На неисследованной планете происходит контакт разведчики с Земли с разумными обитателями планеты, чья концепция жизни является совершенно отличной от земной.
Биолог, медик, поэт из XIX столетия, предсказавший синтез клетки и восстановление личности, попал в XXI век. Его тело воссоздали по клеткам организма, а структуру мозга, т. е. основную специфику личности — по его делам, трудам, списку проведённых опытов и сделанным из них выводам.
«Каббала» и дешифрование Библии с помощью последовательности букв и цифр. Дешифровка книги книг позволит прочесть прошлое и будущее // Зеркало недели (Киев), 1996, 26 января-2 февраля (№4) – с.
Азами называют измерительные приборы, анализаторы запахов. Они довольно точны и применяются в запахолокации. Ученые решили усовершенствовать эти приборы, чтобы они регистрировали любые колебания молекул и различали ультразапахи. Как этого достичь? Ведь у любого прибора есть предел сложности, и азы подошли к нему вплотную.
Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века. Можно сказать — вероятно, самый увлекательный сборник задач по логике.
Книга известного американского математика и логика профессора Р. Смаллиана, продолжающая серию книг по занимательной математике, посвящена логическим парадоксам и головоломкам, логико-арифметическим задачам и проблемам разрешимости, связанным с теоремой Геделя. Рассчитана на интересующихся занимательной математикой.
Книга известного американского популяризатора науки М. Гарднера содержит множество занимательных задач и головоломок из самых различных областей математики. Благодаря удачному подбору материла, необычной форме его подачи и тонкому юмору автора она не только доставит удовольствие любителям математики, желающим с пользой провести свой досуг, но и может быть полезной преподавателям математики школ и колледжей в их работе.