Физика повседневности. От мыльных пузырей до квантовых технологий - [6]

Шрифт
Интервал

. На больших глубинах изменение температуры не так ощутимо, преобладает эффект увеличения давления, и это приводит к возрастанию c по мере приближения ко дну. Глубина z>m чаще всего составляет от 1000 до 1200 м, но может достигать и 2000 м на низких широтах, где теплым остается более толстый слой воды. В высоких широтах, наоборот, z>m может составлять всего 500 или даже 200 м, или еще меньше в полярных регионах. Изменение солености в зависимости от глубины, как правило, незначительно и не оказывает заметного эффекта.

Отражение и преломление световых волн

Напомним свойства отражения и преломления в случае оптики. Если луч света из среды 1 попадает на границу (предположительно плоскую) со средой 2, часть света отражается в среду 1, а другая часть проходит в среду 2 (см. илл. а): это явление преломления. Угол преломления α>2 связан с углом падения α>1 законом Снеллиуса:

где c>1 и c>2 – скорости света соответственно в средах 1 и 2.

Эту формулу можно также написать, используя индексы преломления сред 1 и 2, соответственно n>1 = c/c>1 и n>2 = c/c>2, где c – скорость света в вакууме.

Если световой луч попадает на поверхность с достаточно большим углом падения α>1, то величина

становится больше 1, и не существует такого значения угла α>2, которое соответствовало бы приведенной выше формуле. Таким образом, преломление луча оказывается невозможным, и происходит полное внутреннее отражение (см. илл. b). Это явление используется в оптических волноводах: луч претерпевает целый ряд отражений внутри проводника, и поэтому свет распространяется по нему с минимальными потерями. Самый известный пример оптического волновода – оптоволокно.

Как и световые волны, звуковые волны могут отражаться и преломляться. Формула Снеллиуса остается применимой и к описанию поведения «звуковых лучей», но c>1 и c>2 в этом случае, очевидно, представляют собой скорости звука, а не света.

Преломление и отражение светового луча (красные стрелки), выходящего из воды (показатель преломления равен 1,33) в воздух (показатель преломления близок к 1,0)

Опыт с лазерными указками демонстрирует явление полного отражения на границе между водой и воздухом. Луч, падающий на поверхность воды под небольшим углом α (зеленый), подвергается лишь частичному отражению: часть энергии покидает воду с преломленным лучом, и на экране появляется световое пятно. Скользящий луч (красный) испытывает полное внутреннее отражение

5. Пример изменения скорости звука с в океане в зависимости от глубины. В результате повышения давления и понижения температуры по мере приближения ко дну скорость достигает минимума на глубине z>m, чаще всего около 1000 м


Когда звук распространяется зигзагами

Теперь рассмотрим звуковой луч, источник которого находится на глубине z>m. Независимо от того, пойдет ли он вверх или вниз, в области, в которой он оказывается, скорость звука выше, чем на оси. Таким образом, в результате последовательного прохождения слоев воды на своем пути звуковой луч постепенно искривляется, вплоть до скользящего падения под таким углом, для которого происходит полное отражение (см. врезку). Тогда он начинает искривляться в направлении увеличения (или уменьшения) глубины, пока снова не достигнет глубины z>m, где изменение скорости звука меняет знак. Таким образом, луч движется по зигзагообразной траектории между двумя плоскостями (илл. 6).

Эти две плоскости эквивалентны верхней и нижней границам волновода, у которого нет боковых стенок. Тем не менее благодаря описанному явлению звук способен распространяться в океане на большие расстояния. Наконец-то мы закончили расследование!

Эффективность океанического волновода

Не все исходящие из источника звуковые лучи попадают в этот «океанический волновод». Первоначально звук из источника распространяется во всех направлениях, и превращение его в «звуковой луч» зависит от угла, образующегося между ним и вертикалью. Если этот угол достаточно велик, то звуковой луч распространяется безгранично. Если же угол слишком мал, звуковой луч достигнет поверхности или дна океана. Но дно океана неровное, и оно, как и поверхность (кроме редких моментов, когда она совершенно спокойна), рассеивает звук. Таким образом, море, как правило, может послужить волноводом только для звуковых лучей, которые не достигают ни поверхности, ни дна океана. На практике существуют «акустические каналы», по которым звук передается на большие расстояния, и «теневые зоны», куда звук никогда не попадает.

Звуковые волноводы, созданные человеком

Распространение звука в газах или жидкостях представляет собой возмущение, периодически изменяющее в пространстве и времени плотность частиц, эту среду составляющих. Любой выделенный объем жидкости локально подвергается периодической череде сжатий и расширений.

Скорость звука в жидкостях и твердых телах, вообще говоря, выше, чем в газах. Это и не удивительно, ведь в вакууме звук не распространяется вообще, а разреженный газ имеет плотность промежуточную между вакуумом и конденсированным веществом. Однако если скорость звука в двух средах сильно отличается, то передача звука из одной в другую может быть затруднена. Это явление используется в стетоскопе – инструменте, который доносит в ухо врача звуки из грудной клетки пациента. Первоначально он представлял собой простую деревянную трубку.


Рекомендуем почитать
Пурпурный. Как один человек изобрел цвет, изменивший мир

Это история об Уильяме Перкине, который случайно изобрел пурпурный цвет. И навсегда изменил мир вокруг себя. До 1856 года красители были исключительно натуральными – их получали из насекомых, моллюсков, корней и листьев, а искусственное окрашивание было кропотливым и дорогим. Но в 1856 году все изменилось. Английский химик, работая над лекарством от малярии в своей домашней лаборатории, случайно открыл способ массового производства красителей на фабриках. Этот эксперимент – или даже ошибка – произвел революцию в моде, химии и промышленности. Эта книга – удивительный рассказ о том, как иногда даже самая маленькая вещь может менять и иметь такое продолжительное и важное воздействие. В формате PDF A4 сохранён издательский дизайн.


Политика России в Центрально-Восточной Европе (первая треть ХХ века): геополитический аспект

100-летие спустя после окончания Первой мировой войны и начала становления Версальской системы предыстория и история этих событий требуют дальнейшего исследования. Тема книги актуальна и в связи с территориальными изменениями в Центрально-Восточной Европе (ЦВЕ) в конце ХХ века. Многие сегодняшние проблемы берут начало в геополитической трансформации региона в ходе Первой мировой войны и после ее окончания. Концептуальной новизной работы является попытка проследить возвращение имперской составляющей во внешнюю политику России.


Под сенью учителя

Собирая эту книгу из огромного количества материалов, я ставила перед собой нетривиальную задачу: на жизненном примере взаимоотношений ученого каббалиста Михаэля Лайтмана и его великого учителя Баруха Ашлага показать один из возможных путей в каббалу. Удалось ли мне решить эту задачу, пусть решает читатель От составителя книги Ларисы АртемьевойКнига представлена в сокращенном виде. Это связано с тем,что значительная часть материалов данной книги в расширенном и дополненном виде уже скоро (осень 2006 года) будет представлена в новой книги Михаила Лайтмана, в его редакции и с его комментариями.


Затаенное имя - Тайнопись в 'Слове о полку Игореве'

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


`Тук-тук-тук` - и никого!

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Алфавитно-предметный указатель к систематическому каталогу

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Осознание времени. Прошлое и будущее Земли глазами геолога

Мало кто осознаёт масштабы времени в долгой истории нашей планеты, и именно это лежит в основе многих экологических проблем, которые мы создаем. Нам легко представить себе период в девять дней — именно столько в атмосфере Земли остается капля воды. Но период в сотни лет — время нахождения в атмосфере молекулы углекислого газа — почти за пределами человеческого понимания. Наша повседневность определяется процессами, начавшимися тысячи и миллионы лет назад, а последствия того, что мы делаем, в свою очередь, переживут нас.


Вселенная в вопросах и ответах. Задачи и тесты по астрономии и космонавтике

В книге собраны 181 задача, 50 вопросов и 319 тестов с ответами и решениями. Материал в основном новый, но включает наиболее удачные задания из предыдущих изданий. В целом это не очень сложные, но «креативные» задачи, раскрывающие разные стороны современной астрономии и космонавтики и требующие творческого мышления и понимания предмета. Основой для некоторых вопросов стали литературные произведения, в том числе научно-фантастические повести братьев Стругацких. Работа с этой книгой делает знания по астрономии и космонавтике активными, что важно для будущих ученых и инженеров, а также преподавателей физики и астрономии.


Это мой конёк. Наука запоминания и забывания

Почему мы помним? Как мы забываем? И что же такое память, в конце концов? Отвечая на эти и другие вопросы, умная и веселая книга «Это мой конёк» позволяет нам по-новому увидеть одну из самых поразительных человеческих способностей. Две сестры из Норвегии, нейропсихолог и известная писательница, искусно вплетают в повествование историю, науку и собственные исследования, открывая перед читателем захватывающую панораму понимания памяти — от эпохи Возрождения и открытия гиппокампа, напоминающего по форме морского конька, до нашего времени. В свете самых актуальных научных идей XXI века показана роль различных отделов мозга, причины забывания детских воспоминаний и трудностей с памятью при стрессе и депрессивных состояниях.


Срок времени

Карло Ровелли – итальянский физик-теоретик, специалист в области квантовой гравитации, автор нескольких научно-популярных книг. В “Сроке времени” он предлагает неожиданный взгляд на такой, казалось бы, привычный нам всем феномен, как время. Время, утверждает он, не универсальная истина, а иллюзия, это просто наше ощущение последовательности событий, их причинно-следственных связей. Время есть форма нашего взаимодействия с миром. Тайна времени, вероятно, в большей степени связана с тем, что такое мы сами, чем с тем, что такое космос.