Физика: Парадоксальная механика в вопросах и ответах - [9]

Шрифт
Интервал

Ответ. Можно взять на себя смелость по образу и подобию первого закона Ньютона сформулировать «закон» инерции вращательного движения: «Изолированное от внешних моментов абсолютно твердое тело будет сохранять состояние покоя или равномерного вращения вокруг неподвижной оси до тех пор, пока приложенные к этому телу внешние моменты не заставят его изменить это состояние».

Почему же абсолютно твердое тело, а не любое? Потому, что у нетвердого тела из-за вынужденных деформаций при вращении изменится момент инерции, а это равносильно изменению массы точки для первого закона Ньютона.

В случае вращательного движения, если момент инерции непостоянен, придется принять за константу не угловую скорость, а произведение угловой скорости ю на момент инерции /– так называемый кинетический момент К. В этом случае «закон» инерции вращения примет более общую форму: «Изолированное от внешних моментов тело будет сохранять вектор своего кинетического момента постоянным». Если же тело вращается вокруг неподвижной оси: «Изолированное от внешних моментов относительно оси вращения тело будет сохранять кинетический момент относительно этой оси постоянным». Эти законы, правда, в несколько иной формулировке, называются законами сохранения кинетического момента.


3.3. Вопрос. Земля и Луна вращаются вокруг общего центра масс. Действуют ли на эти небесные тела центробежные силы?

Ответ. Представление, что при вращении материальных точек и тел вокруг оси или неподвижной точки на них должны действовать центробежные (т. е. направленные от центра вращения) силы, является обывательским заблуждением.

Например, и на Землю, и на Луну действуют силы тяготения, направленные друг к другу, а следовательно, к центру вращения (рис. 7). Каких-либо сил, направленных от центра, здесь вообще нет. Чтобы тела, движущиеся по инерции, т. е. равномерно и прямолинейно, свернули с этого пути и стали двигаться по кривым, на них должны подействовать центростремительные, т. е. направленные к центру вращения, силы. Такими являются силы тяготения.

Рис. 7. Схема сил, действующих на систему «Земля – Луна».


В случае, если вращается точка А, привязанная к опоре О на гибкой невесомой связи – нити (рис. 8, а), то, пренебрегая силой тяжести (допустим, опыт поставлен в невесомости), можно сказать, что на эту точку также действует центростремительная сила Fц. На саму же нить, как на связь, со стороны точки А действует направленная от центра реакция R1 = Fц, а со стороны опоры О – сила R2 = Fц (рис. 8, б). На опору О действует сила , направленная от центра. На нить действует уравновешенная система сил, которая не может влиять на движение точки А.

Рис. 8. Силы, действующие на тела во вращающейся системе: а – силы, действующие на вращающуюся по окружности точку А и опору О; б – силы, действующие на связь.


В некоторых учебниках, например, для школ с углубленным изучением физики [26, с.254] специально выделено, что «центробежные силы инерции действуют не на все тела на поверхности Земли». Такая формулировка означает, что центробежные силы существуют и действуют на некоторые тела. Разумеется, это неверно.


3.4. Вопрос. Почему при быстром вращении тела оно испытывает механические напряжения и может даже разрушиться, ведь никакое другое тело с ним не контактирует, на него не действуют никакие силовые поля и т. д.?

Ответ. Действительно, если опыт по вращению, допустим, металлического кольца поставить в невесомости и в вакууме, то с этим телом не будет взаимодействовать никакое другое тело, даже воздух. Разогнать это кольцо можно вращающимся электромагнитным полем (например, возникающим в статоре асинхронного электродвигателя), особенно если кольцо стальное. После окончания разгона свободно вращающееся с угловой скоростью ? кольцо будет обладать кинетической энергией Е:

и будет растягиваться механическим напряжением ?:

где I – осевой момент инерции кольца;

? – плотность материала кольца;

v – линейная скорость кольца.

Чем же вызвано это напряжение? Выше мы видели, что на связь – нить (см. рис. 8, а, б) действуют растягивающие усилия, вызываемые точкой А, вращающейся вокруг опоры О. Ведь именно связь, действуя на точку А центростремительной силой , постоянно сворачивает ее с естественного прямолинейного пути. В этом случае масса (точка А) и связь (невесомая нить) четко выделены. Но если точку А устранить, вместо нити взять массивное тело – стержень или цепь – и вращать его вокруг точки О, то картина усложнится.

В таких случаях, когда связь сама обладает массой, удобно представить ее в виде невесомой связи (нити), нагруженной отдельными массивными точками (рис. 9).

Рис. 9. Невесомая связь – нить, нагруженная точечными массами.


Если число точек невелико, центростремительные силы, действующие на эти точки, легко определить: в точке 1 это Fц1, B точке 2 – сумма двух сил (Fц1 + Fц2), а в точке 3 она максимальна – сумма трех сил (Fц1 + Fц2 + Fц3). Отсюда легко перейти к случаю, когда масса распределена по длине связи равномерно.

Так и с вращающимся кольцом – если представить, что его заменяет многоугольник из невесомых нитей с помещенными в вершинах углов грузами


Еще от автора Нурбей Владимирович Гулиа
«Зеркальная» сауна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Удивительная физика

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения по основным разделам физики, описаны драматические истории великих научных открытий, приведены нестандартные подходы к пониманию физических явлений, нетрадиционные взгляды на научное наследие известных ученых.Для учителей, старшеклассников, студентов, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов физику.


Приватная жизнь профессора  механики

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Удивительная механика

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Книга должна помочь молодому читателю найти свой путь самореализации в изобретательском творчестве, без которого невозможно решение ни одной научно-технической задачи, тем более в таких важных областях экономики, как энергетика и транспорт.


В поисках «энергетической капсулы»

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы людям действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Читатель познакомится с различными типами энергетических накопителей, которые верно служат человеку сегодня, узнает, какие перспективы сулит в будущем применение супермаховичного накопителя энергии, первую модель которого построил автор.


Русский декамерон, или О событиях загадочных и невероятных

В книге рассказывается о загадочных и таинственных случаях, происшедших с автором, жизнь которого оказалась весьма богатой на них. Автор - доктор наук, профессор, подвергает эти случаи научному анализу, классифицирует их, а где можно, и дает им объяснение. Существенное место в книге уделено парадоксальным комическим ситуациям, в которые часто попадал автор. Книга написана живым, разговорным языком; автор предельно откровенен с читателями.


Рекомендуем почитать
Популярная астрофизика. Философия космоса и пятое измерение

Александр Дементьев – журналист (работал в таких изданиях, как РБК, «Ведомости», Лента.ру), закончил МПГУ (бывш. МГПИ им. Ленина) по специальности общая и экспериментальная физика. Автор самого крупного научно-популярного канала «Популярная наука» на «Яндекс. Дзен». Перед вами – уникальная книга, которая даст возможность по-новому взглянуть на космос. Человечество стоит на пороге больших открытий за пределами нашей планеты. И они кардинально изменят жизнь людей! Из книги вы узнаете: • Что ждет Землю и Солнце в будущем.


Шесть невозможностей. Загадки квантового мира

Квантовая физика – очень странная штука. Она утверждает, что одна частица может находиться в двух местах одновременно. Больше того, частица – это еще и волна, и все происходящее в квантовом мире может быть представлено как взаимодействие волн – или частиц, как вам больше нравится. Все это было понятно уже к концу 1920-х годов. За это время было испробовано немало разных более или менее убедительных интерпретаций. Известный популяризатор науки Джон Гриббин отправляет нас в захватывающее путешествие по «большой шестерке» таких объяснений, от копенгагенской интерпретации до идеи множественности миров. Все эти варианты в разной степени безумны, но в квантовом мире безумность не равносильна ошибочности, и быть безумнее других не обязательно значит быть более неверным.


Загадка падающей кошки и фундаментальная физика

Как падающим кошкам всегда удается приземлиться на четыре лапы? Удивительно, сколько времени потребовалось ученым, чтобы ответить на этот вопрос! История изучения этой кошачьей способности почти ровесница самой физики — первая исследовательская работа на тему падающей кошки была опубликована в 1700 г. французом Антуаном Параном, но даже сегодня ученые продолжают находить в ней спорные моменты. В своей увлекательной и остроумной книге физик и заядлый кошатник Грегори Гбур показывает, как попытки понять механику падения кошек помогли разобраться в самых разных задачах в математике, физике, физиологии, неврологии и космической биологии, способствовали развитию фотографии и кинематографа и оказали влияние даже на робототехнику. Поиск ответа на загадку падающей кошки погружает читателей в увлекательный мир науки, из которого они узнают решение головоломки, но также обнаружат, что феномен кошачьего выверта по-прежнему вызывает горячие споры ученых. Автор убежден, что чем больше мы исследуем поведение этих животных, тем больше сюрпризов они нам преподносят.


Космос. От Солнца до границ неизвестного

Что случилось с Венерой? Как Сатурн стал властелином колец? Где искать Девятую планету? Почему мы не видим облако Оорта? Что мы знаем о самой большой звезде? Как живут звезды после смерти? Как галактики воруют друг у друга? Как сфотографировать черную дыру? Какая галактика самая большая? Эта книга отправит вас в космическое путешествием вместе с экспертами журнала New Scientist. Стартуя от Солнца, мы посетим планеты земной группы, газовые гиганты и их спутники, пересечем облако Оорта и выйдем за границы Млечного Пути.


Нейтрино - призрачная частица атома

В книге известного популяризатора науки А. Азимова в живой и популярной форме изложены современные представления о самой неуловимой частице микромира — нейтрино. Азимов прослеживает цепь событий, приведших физиков к открытию нейтрино, рассказывает о том, как эту частицу научились регистрировать, о ее роли в эволюции Вселенной, о последних достижениях нейтринной физики — двухнейтринном эксперименте. Автор стремится раскрыть перед читателем современную физическую картину мира, но в то же время не подавить его массой сведений, столь обширных в этой области науки.Книгой заинтересуются самые широкие круги читателей: школьники, преподаватели и те, кто следит за новейшими достижениями физики.