Физика: Парадоксальная механика в вопросах и ответах - [22]

Шрифт
Интервал

Но 1 т дерева занимает гораздо больший объем, нежели 1 т железа (раз в 15), поэтому истинный вес 1 т дерева больше истинного веса 1 т железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит 1 т, больше истинного веса того железа, которое весит в воздухе тоже 1 т.

Так как 1 т железа занимает объем в 1/8 м3, а 1 т дерева – 2 м3, то разность в весе вытесняемого ими воздуха должна составить около 2,5 кг. Вот насколько 1 т дерева в действительности тяжелее 1 т железа!»

Попробуем доказать обратное. Что такое тонна? Это тысяча килограммов. Что такое килограмм? Это единица массы вещества. При этом не имеет значения, где это вещество находится – в вакууме, воздухе или воде. А то, насколько одно тело тяжелее или легче другого, измеряют весами так, как это предполагал делать в своем доказательстве Я. И. Перельман. При взвешивании в вакууме сила тяжести численно равна весу тела:

где т – масса тела;

g – ускорение свободного падения.

Напомним, что сила тяжести и вес, будучи численно равными друг другу, отличаются тем, что первая приложена в центре масс самого тела, а второй – к связи, например, чаше весов.

При взвешивании в воздухе часть веса «теряется» – вверх действует выталкивающая архимедова сила воздуха. Но она больше у дерева, следовательно, кусок железа массой в 1 т будет весить при взвешивании в воздухе больше, чем кусок дерева той же массы, что и требовалось доказать.

Кстати, массу в 1 т может иметь и определенный объем водорода, который в воздухе будет иметь вообще отрицательный вес. Поэтому «весить одну тонну» водород, гелий и другие вещества легче воздуха не могут, если даже вдруг начать считать тонну мерой веса, хотя иметь массу в 1 т им не возбраняется.

Вот в какие дебри может завести использование одной единицы измерения вместо другой, например, силы вместо массы, что делается в быту достаточно часто!


5.8. Вопрос. В чем можно накопить больше потенциальной энергии – в растянутой пружине или резине?

Ответ. Обычно отвечают, что в пружине, но это не так. Чтобы упростить задачу, представим себе, что мы просто растягиваем стержень из того или иного материала. На упругий элемент, допустим, стальной стержень, действует сила Р, зависящая от величины перемещения h конца этого стержня. Умножив среднюю силу на перемещение, получим значение накопленной потенциальной энергии:

А если растягивать не металлический элемент, а допустим, резиновый? Для растяжения резины на ту же величину потребуется в десятки раз меньшая сила. При этом резина выдерживает в сотни раз больше растяжение – сталь-то растягивается в упругой зоне очень незначительно – примерно на 1–2 % (большее значение относится к особо прочной – пружинной проволоке). Да и плотность резины в несколько раз меньше, чем у стали. В результате удельная энергия, или энергия, отнесенная к килограмму массы упругого элемента, у резины оказывается в десятки раз больше, а конкретно – 3–4 кДж/кг.

Почему же повсеместно не применяют вместо стальных пружин резиновые элементы? Например, резиновые энергонакопители для часов, приборов, заводных игрушек и т. д.?

Во-первых, иногда применяют, когда действительно имеется потребность в высокой удельной энергии. Летающие игрушки или модели самолетов снабжают именно резиномоторами, так как еще ни одна летающая модель, снабженная пружинным энергонакопителем, не поднялась в воздух. Это свидетельствует о высоких энергонакопляющих свойствах резины. Всякого рода амортизаторы, ловители в авиации, «отбойники» в автомобилях, даже «рогатки» – детские катапульты – делают с использованием резины. Попробуйте, изготовьте «рогатку» с пружинами вместо резинок и выстрелите из нее.

Но широко применять резиновые энергонакопители мешают малые долговечность, надежность, стабильность свойств. Кроме того, при деформации резиновых элементов много механической энергии переходит в тепло из-за упругого гистерезиса.

Если уж говорить о накоплении потенциальной энергии, то непревзойденным по удельной энергоемкости является газ. Благодаря малой плотности и огромной сжимаемости газ накапливает энергии в десятки раз больше, чем резина той же массы. Но при сжатии газ нагревается, и это тепло чаще всего рассеивается при «хранении» энергии. Отсюда – большие потери энергии и малый КПД газовых накопителей энергии.

Следует упомянуть еще об одном перспективном «упругом» накопителе энергии. Это – так называемые «псевдоупругие» материалы, в основном, сплавы титана и никеля. Практически это те же материалы, которые обладают «памятью формы». Проволоку из такого материала можно деформировать, например, растягивать, раз в десять больше, чем стальную. Отсюда и на порядок большая удельная энергоемкость. Более того, псевдоупругие материалы не подвержены усталости, как обычные материалы, например, сталь, и крайне долговечны.

Одно плохо – пользоваться ими пока можно разве только в саунах, причем сильно натопленных, так как свойство «псевдоупругости» приобретается только при 150–200 °C. При обычной же температуре такие материалы ведут себя «вяло», будто бы изготовлены из смолы, только очень прочной. КПД накопления и выделения энергии в таких случаях ничтожен.


Еще от автора Нурбей Владимирович Гулиа
«Зеркальная» сауна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Удивительная физика

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения по основным разделам физики, описаны драматические истории великих научных открытий, приведены нестандартные подходы к пониманию физических явлений, нетрадиционные взгляды на научное наследие известных ученых.Для учителей, старшеклассников, студентов, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов физику.


Удивительная механика

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Книга должна помочь молодому читателю найти свой путь самореализации в изобретательском творчестве, без которого невозможно решение ни одной научно-технической задачи, тем более в таких важных областях экономики, как энергетика и транспорт.


Приватная жизнь профессора  механики

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


В поисках «энергетической капсулы»

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы людям действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Читатель познакомится с различными типами энергетических накопителей, которые верно служат человеку сегодня, узнает, какие перспективы сулит в будущем применение супермаховичного накопителя энергии, первую модель которого построил автор.


Русский декамерон, или О событиях загадочных и невероятных

В книге рассказывается о загадочных и таинственных случаях, происшедших с автором, жизнь которого оказалась весьма богатой на них. Автор - доктор наук, профессор, подвергает эти случаи научному анализу, классифицирует их, а где можно, и дает им объяснение. Существенное место в книге уделено парадоксальным комическим ситуациям, в которые часто попадал автор. Книга написана живым, разговорным языком; автор предельно откровенен с читателями.


Рекомендуем почитать
Разум побеждает: Рассказывают ученые

Авторы этой книги — ученые нашей страны, представляющие различные отрасли научных знаний: астрофизику, космологию, химию и др. Они рассказывают о новейших достижениях в естествознании, показывают, как научный поиск наносит удар за ударом по религиозной картине мира, не оставляя места для веры в бога — «творца и управителя Вселенной».Книга рассчитана на самые широкие круги читателей.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.