Физика: Парадоксальная механика в вопросах и ответах - [20]

Шрифт
Интервал

Пока баржа двигалась, наматывая на барабан трос второго якоря, первый якорь, трос которого был намотан на первый барабан, теперь отсоединенный от вала, быстренько отвозился на лодке вперед и забрасывался так же, как и предыдущий якорь. Затем первый барабан соединялся с валом водяных колес, а второй – отсоединялся от него. При движении баржи на первом тросе, второй якорь уже известным нам способом забрасывался на лодке вперед.

Вот так, или почти так (точной технологии работы этой самоходной баржи не сохранилось, и автор описал наиболее вероятный способ ее действия) двигалось безмоторное судно против течения реки, поражая современников.


5.3. Вопрос. Можно ли отапливать помещение... ветром?

Ответ. Можно получать энергию от ветроэлектростанций, которых так много в Америке и Европе, и отапливать помещение этой электроэнергией. Однако есть способ, позволяющий обойтись без электрической части ветроустановки.

Если в устройстве имеется вертикальный вал, а он почти всегда присутствует на ветряках средней мощности, то с его нижней частью можно без всякой механической передачи непосредственно соединить мешалку Джоуля, хорошо известную из школьного курса физики (рис. 26). Эта мешалка переводит механическую энергию в тепловую.

Рис. 26. Мешалка Джоуля.


Схема такого ветряка с мешалкой Джоуля представлена на рис. 27. Нижняя часть вертикального вала ветряка соединена непосредственно с валом мешалки Джоуля, изготовленной, например, из обычной 200-литровой бочки. При вращении ветроколеса вода в мешалке, перемешиваемая лопастями, нагревается совсем как в опытах Джоуля. Горячая вода по патрубкам может направляться в батареи отопления или для других целей.

Рис. 27. Схема ветряка, вал которого непосредственно связан с мешалкой Джоуля.


5.4. Вопрос. Говорят, что первый вертолет придумал Леонардо да Винчи и что построенная по его эскизам машина летала. Могло ли такое быть?

Ответ. Интересно, что в игрушки типа летающего пропеллера, которыми забавляются дети сейчас, играли и дети в Средневековье. Установлено, что такие игрушки известны аж с 1320 года [13] .

Первый же эскиз большого вертолета создан Леонардо да Винчи (1452–1519). Этот эскиз представлен на рис. 28. Эскиз подписан самим автором – справа налево, и не следует думать, что это «зеркально» перевернутый рисунок. Он был левшой и часто писал таким образом.

Рис. 28. Эскиз вертолета Леонардо да Винчи, подписанный автором.


Вот что сам Леонардо пишет об этой конструкции: «Остов винта должно сделать из железной проволоки, толщиной в веревку; расстояние же от окружности до центра – 25 локтей. Если все будет сделано как следует, то есть из прочной парусины, поры в которой тщательно замазаны крахмалом, то я думаю, что при вращении с известной скоростью такой винт опишет в воздухе спираль и поднимется вверх».

Не так давно распространилось сообщение, что в США на авиазаводе в Сан-Диего по эскизам Леонардо был построен летательный аппарат, который якобы поднялся в воздух, даже с грузом.

Автор утверждает, что этого быть не могло. Или вертолет построен не по чертежам Леонардо, и работала эта машина не по заложенному им принципу, или она никогда не поднималась в воздух.

Если внимательно взглянуть на эскиз Леонардо, то в нижней части машины можно увидеть круглую платформу. По ней должны были бегать люди, вращающие кабестан, к которому крепился воздушный винт. Об этом говорится и в описании принципа работы летательного аппарата. Да и других двигателей, кроме мускульного, в то время просто не было.

Так вот, даже если не говорить о том, что ничтожной мощности этих бегающих людей не хватило бы на отрыв машины от земли, другой эффект уж точно помешал бы это сделать.

Вал винта не мог быть жестко скреплен с платформой – люди, отталкиваясь от платформы, вращали воздушный винт. Значит платформа подвешивалась на валу воздушного винта с возможностью свободного вращения, т. е. на подшипниках. Но тогда в аппарате вращаться стала бы в первую очередь сама платформа, от которой отталкивались ногами люди, а не воздушный винт, испытывающий большое сопротивление вращению – ведь именно винт должен был, «ввинчиваясь» в воздух, поднимать вертолет. А вращению самой платформы ничто не препятствовало.


5.5. Вопрос. Почему вертолет летит намного медленнее самолета?

Ответ. Вертолет поддерживается в воздухе главным образом своим несущим винтом. Для простоты будем говорить только о вертолете с одним несущим винтом, хотя, как известно, бывают и летательные аппараты с двумя винтами, вращающимися в противоположные стороны.

Почему же вертолеты не летают так же быстро, как самолеты? Оказывается, мешает этому именно несущий винт. Когда вертолет летит, а винт вращается (рис. 29), то на одну лопасть винта, которая движется в сторону полета машины, приходится набегающий поток воздуха, по скорости равный сумме скоростей вертолета окружной скорости лопасти ?R. На другую лопасть винта, которая движется в противоположную сторону, приходится набегающий поток, скорость которого равна разности окружной скорости лопасти и скорости полета вертолета. Поэтому, по теории движущегося крыла, первая часть винта будет обладать подъемной силой больше второй, и вертолет будет крениться.


Еще от автора Нурбей Владимирович Гулиа
«Зеркальная» сауна

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Удивительная физика

В увлекательной форме изложены оставшиеся за рамками школьных учебников сведения по основным разделам физики, описаны драматические истории великих научных открытий, приведены нестандартные подходы к пониманию физических явлений, нетрадиционные взгляды на научное наследие известных ученых.Для учителей, старшеклассников, студентов, а также для всех, кто желает открыть для себя незнакомую, полную тайн и парадоксов физику.


Удивительная механика

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Книга должна помочь молодому читателю найти свой путь самореализации в изобретательском творчестве, без которого невозможно решение ни одной научно-технической задачи, тем более в таких важных областях экономики, как энергетика и транспорт.


Приватная жизнь профессора  механики

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


В поисках «энергетической капсулы»

Нурбей Владимирович Гулиа – профессор, доктор технических наук, рассказывает в своей книге о работе над созданием эффективного накопителя энергии – «энергетической капсулы», которая позволила бы людям действительно по-хозяйски, бережно использовать энергию, даваемую нам природой. Читатель познакомится с различными типами энергетических накопителей, которые верно служат человеку сегодня, узнает, какие перспективы сулит в будущем применение супермаховичного накопителя энергии, первую модель которого построил автор.


Русский декамерон, или О событиях загадочных и невероятных

В книге рассказывается о загадочных и таинственных случаях, происшедших с автором, жизнь которого оказалась весьма богатой на них. Автор - доктор наук, профессор, подвергает эти случаи научному анализу, классифицирует их, а где можно, и дает им объяснение. Существенное место в книге уделено парадоксальным комическим ситуациям, в которые часто попадал автор. Книга написана живым, разговорным языком; автор предельно откровенен с читателями.


Рекомендуем почитать
Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


Разум побеждает: Рассказывают ученые

Авторы этой книги — ученые нашей страны, представляющие различные отрасли научных знаний: астрофизику, космологию, химию и др. Они рассказывают о новейших достижениях в естествознании, показывают, как научный поиск наносит удар за ударом по религиозной картине мира, не оставляя места для веры в бога — «творца и управителя Вселенной».Книга рассчитана на самые широкие круги читателей.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.