Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [45]

Шрифт
Интервал



Фиг. 119.Заряжение антенной системы.

>Пара пластин, присоединенных к батарее, заряжается (одна положительно, другая отрицательно) до тех пор, пока разность потенциалов между ними не станет равной э.д.с. батареи. Если пластины заменить стержнями, то электрическое поле вокруг заряженных стержней будет таким, как показано на фигуре. Поле симметрично, причем стержни играют роль оси симметрии. Чтобы полностью представить себе картину поля, вообразите, что приведенный рисунок вращается вокруг этой оси. Остальные компоненты схемы, провода и батарея, тоже создают электрические поля; они здесь не показаны.


На фиг. 120, 121 представлены картины электрического поля около стержней, к которым приложено напряжение, медленно изменяющееся с течением времени по величине и направлению. Когда напряжение максимально, стержни заряжены (один положительно, другой отрицательно) так, как показано на фиг. 121, а. Фиг. 121, б соответствует моменту, когда напряжение уменьшилось вдвое; фиг. 121, в иллюстрирует состояние, в котором напряжение равно нулю. В стадиях от а до б — и от б до в заряды движутся вдоль стержней обратно к источнику, унося с собой свои силовые линии, которые постепенно исчезают. В следующую четверть периода напряжение, количество зарядов на стержнях и поле достигают максимума, но заряды на стержнях и напряжение будут противоположны этим величинам в стадиях a, б, направление поля также изменится на обратное. Затем все перечисленные величины снова изменяются до нуля, и мы возвращаемся к первой стадии процесса. Заряды нагнетаются к антенным стержням и откачиваются от них. Вдали от стержней можно обнаружить в лучшем случае слабое излучение.



Фиг. 120.Антенные стержни заряжаются от батареи (положительно и отрицательно), при этом вокруг них создается электрическое поле.



Фиг. 121. Дипольная антенна.

>Антенна подключена к источнику переменного напряжения. Приведенные рисунки изображают картину электрического поля в окрестности обоих стержней. (Разумеется, вокруг остальной части схемы тоже существует поле.) Предполагается, что частота переменного напряжения очень мала, поэтому изменения поля происходят очень медленно. При нарастании и спадании напряжения заряды «приливают» в стержни и наоборот; при этом раскрываются и сокращаются громадные зонтики из силовых линий — возникает пульсирующее электрическое поле, которое находится в фазе с напряжением. Изображенные конфигурации силовых линий соответствуют сечению реальной картины поля в плоскости: поле на самом деле имеет пространственную картину. Чтобы представить себе ее, вообразите, что картина, изображенная в плоскости, вращается вокруг оси стержней. 


На фиг. 122 показаны те же стадии при значительно более быстром изменении величины и направления переменного напряжения (или при значительно большей длине стержней). Удаленные части поля в каждый момент времени не получают вовремя информации об изменениях напряжения и не исчезают, подобно более близким частям. Они отделяются в виде замкнутых петель, которые потом оттесняются следующей группой силовых линий, появляющихся и увеличивающихся в размерах при новом нарастании напряжения. Представьте себе, что длинным кнутом внезапно хлопают с такой силой, что образующаяся на нем петля в результате резкого движения отрывается. От настоящего кнута петля, конечно, отделиться не может, а вот на силовых линиях поля может образоваться такая отделяющаяся петля. Вычисления, проведенные с помощью модифицированного уравнения 

для движущихся зарядов, предсказывают именно такую картину. Схематические изображения картин поля, представленные на фиг. 122, 124, 125, основаны на таких вычислениях; впервые их проделал Герц, который первым же экспериментально получил радиоволны.



Фиг. 122.Дипольная антенна.

>Антенна подключена к источнику переменного напряжения высокой частоты. Изменение напряжения происходит очень быстро.

>1 — источник напряжения включают в момент, когда напряжение равно нулю. Стержни не заряжены.

>2 — напряжение, величина заряда и поле возрастают, этим сопровождается движение зарядов по стержням (1/8 периода спустя после включения источника).

>3 — напряжение, величина заряда и поле возросли до максимума (1/4 периода после включения источника при незаряженных стержнях).

>4 — напряжение, величина заряда и поле уменьшаются, удаленные же области поля остаются на своем месте. Участки линий, ближайшие к стержням, стягиваются, и внешние области линий поля превращаются в замкнутые петли.

>5 — напряжение и величина заряда равны нулю (1/2 периода после включения источника). Однако поле остается в форме замкнутых петель, которые перемещаются от стержней, «отталкиваемые» вновь образующимися петлями.

>6 — по стержням стремительно движутся новые заряды противоположного знака, вновь создавая поле в центральной области. Это нарастающее поле «отталкивает» петли предшествующего поля в области пространства, более удаленные от стержней.

>7 — величина нового заряда и вновь появившееся напряжение достигают максимума. Образуется новое поле с обратным направлением стрелок» которое достигает максимума.


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.