Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [42]
Более того, триод усиливает мощность. К сетке и от нее текут лишь очень малые токи: большая часть электронов направляется к аноду. Таким образом, в цепь сетки триода под действием малого напряжения поступает чрезвычайно малый ток, в то время как в анодной цепи появляется гораздо больший ток, который, протекая через достаточно большое сопротивление, вызывает большие изменения напряжения. Другими словами, триод отдает в анодную цепь значительно большую мощность и вызывает значительно большие изменения мощности, чем подводятся к сетке. Триод напоминает в этом отношении современную машину-автомат, в которой с помощью легкого нажатия кнопки управляют огромными количествами энергии. В управлении потоком энергии состоит основная функция триода как усилителя. Дополнительная энергия поступает от источника высокого постоянного напряжения (это может быть батарея или сетевой выпрямитель), который включают в анодную цепь.
Фиг. 109.Электрическое поле в триоде при положительной сетке (ненормальный режим).
>Сквозь сетку проходит мощный поток электронов, стремительно уносимых полем к аноду; некоторые электроны задерживаются сеткой С. Тонкие стрелки показывают скорости электронов. Толстые стрелки указывают направление силы, действующей на отрицательные электроны со стороны поля.
Фиг. 110.Электрическое поле в триоде при отрицательной сетке (обычный режим работы лампы),
Фиг. 111.Триод в действии.
>Электроны, испускаемые накаленным катодом, образуют облако в области между катодом и сеткой. Электроны, которым удается пройти сквозь ячейки сетки, движутся под действием сильного поля к аноду. Разность потенциалов между сеткой и катодом управляет потоком электронов.
Фиг. 112.«Характеристика» триода.
>Напряжение анода поддерживается при снятии этой «характеристики» постоянным.
Триоды в радиоприемниках
В усилителе радиоприемника приходящие радиосигналы создают малые напряжения между катодом и сеткой триода[60]. Возникающие в результате этого изменения потока электронов, направляющихся к аноду, вызывают большие изменения напряжения между концами так называемого «сопротивления нагрузки», включенного в анодную цепь, с которого «снимают» эти изменения напряжения. Напряжение на сопротивлении нагрузки можно приложить между сеткой и катодом еще одного триода для дальнейшего усиления и в конечном счете заставить работать от этого напряжения динамик.
Чтобы динамик приемника мог работать от радиосигналов, их нужно не только усилить, но и выпрямить — пропустить через какое-то устройство, дающее на выходе ток одного направления. Необходимость выпрямления радиосигналов не очевидна; почему их приходится выпрямлять, будет рассказано в гл. 41.
Триод может работать как выпрямитель у нижнего излома своей характеристики — графика зависимости тока от напряжения, где характеристика загибается, приближаясь к горизонтальной оси. Однако, несмотря на возможность использовать одну и ту же лампу как для выпрямления, так и для усиления, лучше разделить обе эти задачи и применять разные лампы.
Триоды сочетают усилительные свойства с достоинствами диодов. Диоды находят применение в «источниках питания» для получения постоянного тока из переменного; эти источники используются вместо батарей. Обеим лампам угрожает конкуренция со стороны новых приборов — маленьких «транзисторов», в которых нет накаливаемых элементов. В транзисторе в кусочке полупроводникового кристалла создается однонаправленное управляемое противодействие движению электронов на стыках полупроводниковых материалов двух типов в одном и том же кристалле.
Фиг. 113. Усиление радиосигналов.
>а — усиление на одном триоде; б — две ступени усиления.
Электронная пушка
Тут вы оказываетесь похожим на человека, который всю жизнь говорил прозой, сам того не зная. Вы, должно быть, имели дело с электронной пушкой, не зная об этом. Электроны, испаряющиеся из накаленного катода, ускоряются под действием электрического поля и бомбардируют анод. Если в аноде проделать отверстия, то через каждое отверстие будет выбрасываться поток электронов. Электроны продолжают свой путь, пока не ударятся о стенки баллона или, если в лампе есть остатки газа, пока не потеряют энергию при столкновениях с молекулами газа. Если электроны обладают достаточно большой энергией, то они могут пройти даже сквозь тонкие стеклянные или металлические стенки баллона и вылететь в атмосферу, где вскоре тормозятся.
Электронная пушка, предназначенная для получения узкого пучка электронов, обладает некоторыми дополнительными особенностями устройства. Анод имеет лишь одно отверстие, добавлены сетки для управления фокусировкой и интенсивностью пучка. Благодаря фокусировке электроны выходят очень узким пучком или собираются в маленькое пятнышко к моменту достижения мишени, если пучок при выходе расходящийся. Чтобы добиться этого, создают небольшие дополнительные электрические поля. Проблемы, связанные с получением полей нужной конфигурации, составляют новую область техники — «электронную оптику», в которой пользуются плодотворной аналогией между классической оптикой и механикой электронов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.
В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.
Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.
Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.
Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.
Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.
Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.