Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [4]

Шрифт
Интервал

Разорвите цепь и включите в рассечку две проволоки, погруженные в сосуд с водой. Проделайте опыт с дистиллированной водой, с водой, к которой добавлена серная кислота, с раствором медного купороса и понаблюдайте за действием тока во всех этих случаях. Медная проволока может участвовать во вторичных химических превращениях, поэтому опыты следует повторить, погружая в раствор стержни из химически инертного графита, например грифели от карандаша.



Фиг. 21.Опыт 4 (3).


ДЕМОНСТРАЦИОННЫЙ ОПЫТ. АМПЕРМЕТРЫ И РАЗВЕТВЛЕННЫЕ ЦЕПИ

Составьте какую-нибудь сложную цепь, вроде показанной на фиг. 22. Снимите показания амперметров и сделайте выводы, которые вы считаете обоснованными.



Фиг. 22.


Задача 2. Амперметры

В схеме, изображенной на фиг. 23, один амперметр показывает значительно больший ток, чем другой.

а) Предложите объяснение этому обстоятельству.

б) Как вы стали бы проверять свое объяснение экспериментально?



Фиг. 23.К задаче 2.


Задача 3. Электроснабжение

На фиг. 24 показана электростанция, снабжающая энергией две деревни. Ток поступает по толстым медным проводам, сопротивление которых пренебрежимо мало. Из очевидных соображений удобства включения и выключения ламп, а также из важных соображений, связанных с током и сопротивлением, лампы накаливания включены в каждой деревне «в параллель». Как изменится показание амперметра, включенного в цепь на станции.

а) если 100 ламп, отстоящих на 1 км, будут выключены и в тот же момент включат 100 ламп, отстоящих от станции на 2 км?

б) если общее количество зажженных ламп удвоить?



Фиг. 24.К задаче 3.


Обратите внимание на то, что вы пользовались амперметром, не имея никаких сведений о его устройстве и принципе действия. Но это ничуть не хуже, чем пользоваться секундомером, не открывая его. Узнав, как амперметры ведут себя в реальных опытах, вы можете в зависимости от их поведения оценивать их качество и соответственно пользоваться ими. Говоря, что амперметры измеряют ток, мы просто продолжаем проводить эту убедительную аналогию.


Измерение тока

Предположим, что мы укорачиваем цепь и «увеличиваем ток», что обнаруживается по более яркому свечению ламп, включенных в цепь. Опыты, подобные опыту 4, показывают, что при усилении теплового действия тока усиливаются и магнитное и химическое действия: электромагниты, включенные в цепь, притягивают сильнее, а в ваннах с растворами ускоряются химические превращения. Перечисленные действия электрического тока — это все, что мы о нем знаем… Поэтому было бы более реалистичным говорить, что сами эти эффекты представляют собой электрический ток, чем называть их следствием течения какой-то таинственной субстанции. И какую бы точку зрения ни принимать, если мы хотим придумать способ измерения тока, нам придется воспользоваться одним или несколькими действиями тока. Мы характеризуем ТОК всеми его действиями и выбираем одно из них для измерения величины тока. Аналогично мы поступили с температурой — ввели понятие новой величины и определили способ ее измерения путем выбора измеряемого эффекта (например, расширение тел) и измерительного прибора (например, ртутный термометр). В этом курсе мы будем измерять токи по их химическим действиям. Сделав такой выбор, воспользуемся электролитической ванной для осаждения меди и будем взвешивать медь, выделяющуюся на приемной пластине.



Фиг. 25.Химические действия тока складываются.


В качестве меры электрического ТОКА возьмем СКОРОСТЬ ВЫДЕЛЕНИЯ МЕДИ в электролитической ванне. Выбранная величина определяет то, что мы понимаем под электрическим током. Она выражает опытное утверждение, которое говорит лишь о следующем:

1. Опыт показывает, что, когда мы изменяем цепь с целью увеличить ток (о чем судят по тепловому и магнитному эффектам), химическое действие тока тоже усиливается (ускоряется).

2. При разветвлении цепи сумма скоростей выделения меди в ветвях равна скорости выделения меди в магистрали. Это убеждает нас в разумности сделанного выбора. В то же время, поскольку представление об электрическом токе, подобно представлению о температуре, является искусственным, мы можем выбрать определение по своему усмотрению (если только мы не пользуемся несколькими противоречащими друг другу определениями). Выбранная нами единица измерения тока соответствует раннему этапу развития учения об электричестве, отсюда ее несколько странная размерность. Она определяется так:

1 ампер — это величина такого тока, при прохождении которого через электролитическую ванну происходит выделение меди со скоростью 0,000 000 329 кг меди в секунду.

Вообще мы определим способ измерения тока следующим образом:

ток измеряется скоростью переноса меди в электролитической ванне с раствором медного купороса[13].

Тогда

- при силе тока 1 а выделяется 0,000 000 329 кг меди в секунду,

- при силе тока 2 а выделяется 0,000 000 658 кг меди в секунду,

- при силе тока 20 а выделяется 0,000 006 580 кг меди в секунду,

- при силе тока 1 а выделяется (I)∙ (0, 000 000 329) кг меди в секунду.

Этим определяется наша единица силы тока 1 а (сокращение от 1 ампер) и общий способ измерения; этим же соотношением определяется сила тока


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Неопределенный электрический объект. Ампер. Классическая электродинамика.

Андре-Мари Ампер создал электродинамику — науку, изучающую связи между электричеством и магнетизмом. Его математически строгое описание этих связей привело Дж. П. Максвелла к революционным открытиям в данной области. Ампер, родившийся в предреволюционной Франции, изобрел также электрический телеграф, гальванометр и — наряду с другими исследователями — электромагнит. Он дошел и до теории электрона — «электрического объекта», — но развитие науки в то время не позволило совершить это открытие. Плоды трудов Ампера лежат и в таких областях, как химия, философия, поэзия, а также математика — к этой науке он относился с особым вниманием и часто применял ее в своей работе.


Физика

Удивительный мир науки, которая раскрывает законы существования материи, существования Вселенной, предстает на страницах этой книги. Наша энциклопедия поможет юному читателю осознать незаметную на первый взгляд связь, которая существует между научными открытиями и техническими достижениями человечества, а также познакомит его со становлением и развитием основных направлений физики, расскажет о знаменитых ученых, чьи имена навсегда вписаны в историю мировой науки.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Чем мир держится?

В списке исследователей гравитации немало великих имен. И сегодня эту самую слабую и одновременно самую могучую из известных физикам силу взаимодействия исследуют тысячи ученых, ставя тончайшие опыты, выдвигав, остроумные предположения и гипотезы.В книге рассказывается, как эта проблема изучалась в прошлом и как она изучается в настоящее время. Для широкого круга читателей.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.