Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [39]

Шрифт
Интервал


Батарея

Между зажимами батареи, не включенной в цепь, существует электрическое поле. Соедините зажимы проволокой, и поле будет стремиться исчезнуть; силовые линии поля, «стягивающие» зажимы батареи, будут тянуть заряды вдоль проволоки, создавая тем самым ток, который можно рассматривать как проявление непрекращающегося стремления избавиться от поля.



Фиг. 96. Батарея обладает собственным электрическим полем.


Силовые линии и движущиеся заряженные частицы

Силовые линии электрического поля указывают в каждой точке направление силы, действующей на малый пробный положительный заряд. Предположим, мы вносим в электрическое поле крошечную заряженную частицу. Будет ли она двигаться вдоль силовой линии? Оказывается, только вначале. Дело в том, что частица перемещается всегда в направлении ее результирующего количества движения. В любой точке частица при своем движении испытывает действие силы, направленной по касательной к силовой линии, и количество движения частицы в этом направлении увеличивается. Это приращение количества движения складывается с предшествующим количеством движения, которое может иметь другое направление, если силовые линии искривлены. Электроны, например, приобретают ускорение вдоль силовых линий электрического поля. Однако после того, как электроны начали двигаться, они не могут точно следовать направлению искривленных силовых линий, а уносятся в направлении вектора количества движения.



Фиг. 97.Движение маленькой положительно заряженной частицы, обладающей массой, в электрическом поле.

>В каждом случае частица начинает двигаться из состояния покоя в точке А. Частица движется с ускорением, поскольку со стороны электрического поля к ней приложена сила, действующая на ее положительный заряд. Траектория частицы показана жирной пунктирной линией. (Отрицательная частица, например электрон, довершала бы такое движение при противоположном направлении поля.)

>На фигуре в показана частица в поле между положительной пластиной и двумя отрицательно заряженными стержнями, разделенными зазором. Траектория частицы не может сильно искривиться, и она проносится между стержнями. 


Так электрические поля заставляют двигаться электроны: увлекают их от катода к аноду двухэлектродной радиолампы — диода, управляют потоком электронов в усилительной лампе — триоде, ускоряют пучок электронов в так называемой электронной пушке, создают периодическое горизонтальное движение электронного луча в пределах некоторого угла в осциллографической или телевизионной трубке. Попытайтесь представить себе картину электрических полей, которые увлекают электроны и управляют их движением в описываемых ниже приборах.


Электроны в электрическом поле

Если поместить в электрическое поле заряженную частицу, то на ней соберется несколько силовых линий поля, которые начнут тянуть частицу, как показано на фиг. 98, а. Электроны, обладающие отрицательным зарядом, движутся под действием силы, направленной противоположно полю[58], как показано на фиг. 98, б. Разумеется, электрическое поле, действующее на электрон (фиг. 98, в), не претерпевает изменений из-за присутствия электрона, который не искажает общей картины поля. Стрелка на фиг. 98, в указывает направление силы, приложенной к отрицательному электрону, находящемуся в электрическом поле.



Фиг. 98.Заряженное тело малых размеров в электрическом поле.

>а и б — результирующее поле; в — заряд тела слишком мал, чтобы искажать однородное поле. Фигура в изображает также внешнее поле, которое действует на заряд тела во всех случаях независимо от того, велик заряд или мал.

>Стрелка указывает направление силы, действующей на отрицательный заряд.


Испускание электронов накаленными металлами

Опыты с простыми радиолампами показывают, что раскаленная нить накала служит источником некоего переносчика тока, способного поддерживать ток в одном направлении — от нити накала к аноду. Это имеет место даже в том случае, если в лампе создан самый высокий вакуум — идеальный изолятор, разделяющий нить накала и анод. Поскольку ток есть движение зарядов, в лампе должны появляться какие-то носители тока, обладающие электрическим зарядом. При холодной нити никакого тока нет: эффект прохождения тока наблюдается только, когда нить раскалена. Таким образом, мы приходим к предположению, что носители тока испускаются нитью. Миллиамперметр и вольтметр говорят нам, что если эти носители перемещаются от нити накала к аноду, то они должны обладать отрицательным зарядом. Ток через лампу условно рассматривается как ток положительных зарядов, текущий от анода к нити накала, направление этого тока считается положительным; говорят также об отрицательном токе в направлении от нити накала к аноду. Разность потенциалов, обусловливающая этот ток, приложена так, что анод положителен, а нить накала отрицательна. Поэтому электрическое поле притягивает отрицательные заряды от нити накала к аноду. Если изменить направление приложенной разности потенциалов, то никакого тока не будет, носители будут испытывать действие силы, направленной в сторону нити накала, и не смогут двигаться. Мы называем эти носители тока


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.