Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [36]

Шрифт
Интервал

>1 и Р>2 будут пропорциональны их площадям. Поскольку обе области выделены конусами с одинаковыми углами при вершине, их площади пропорциональны квадратам расстояний их от D[55]:

ПЛОЩАДЬ Р>1/ПЛОЩАДЬ Р>2 = d>1>2/d>2>2 из геометрии.

Следовательно,

Q>1/Q>2 = d>1>2/d>2>2

Если закон Кулона справедлив, то следует ожидать, что силы, с которыми Q>1 и Q>2 действуют на очень малый пробный заряд q, равны Q>1q/d>1>2 и Q>2q/d>2>2. Но мы показали, что Q>1 и Q>2 пропорциональны d>1>2 и d>2>2. Поэтому запишем вместо Q>1 и Q>2 Kd>1>2 и Kd>2>2. Тогда силы, действующие на пробный заряд q, будут равны

∙(K∙d>1>2)∙q/d>1>2 и — ∙(K∙d>2>2)∙q/d>2>2

или Kq и —

Kq, а эти силы равны и противоположны по направлению и, следовательно, взаимно уничтожаются. (См. ниже более краткий алгебраический вариант доказательства.)

Мы рассмотрели только пару узких конусов, выделяющих области Р>1 и Р>2. Можно представить себе еще одну пару конусов, примыкающих к первой и также проходящих через точку D. Те же самые рассуждения применимы к этой и ко всем другим парам конусов, которыми теперь можно мысленно заполнить весь шар[56].


Проверка

Если дан закон обратной пропорциональности квадрату расстояния, то можно показать, что «электрическое поле внутри полого заряженного шара отсутствует». При проверке закона обратной пропорциональности квадрату расстояния мы опираемся на обратное утверждение. Если некое утверждение верно, то обратное утверждение не всегда верно, но мы можем легко показать, что в данном случае оно верно. Геометрия конусов дает множители d>1>2 и d>2>2 в числителях приведенных выше выражений; в соответствии с законом обратной пропорциональности квадрату расстояний такие же множители оказываются в знаменателе каждой дроби. Один заряд больше другого, но эта разница компенсируется расстоянием в точно такой же пропорции. Если бы сила взаимодействия зарядов зависела от расстояния по какому-то другому закону и не подчинялась закону обратной пропорциональности квадрату расстояния, то в знаменателе каждой дроби были бы другие множители, и указанная выше компенсация нарушалась. Например, при обратной пропорциональности кубу расстояния действие большего по величине, но более удаленного заряда ослаблялось бы слишком сильно. (Так, если расстояния относятся, как 3:1, то площади вырезаемых областей относятся, как 9:1, и заряды на них, — как 9:1. Обратные квадраты расстояний относятся, как 1:9, и это компенсирует разную величину заряда. Обратные кубы расстояний относятся, как 1:27, и это нарушило бы компенсацию.)

Таким образом, если внутри равномерно заряженной сферы электрическое поле равно нулю, то сила взаимодействия между зарядами должна подчиняться закону обратной пропорциональности квадрату расстояния. Путем дополнительных геометрических построений, поразмыслив как следует над распределением зарядов на проводниках, можно обобщить этот вывод на замкнутую металлическую коробку любой формы. Если коробка отличается по форме от шара, то заряд распределяется на ее поверхности неравномерно. В самом деле, распределение заряда должно быть как раз таким, чтобы электрическое поле внутри всюду было равно нулю. Следовательно, мы располагаем простым и вместе с тем тонким методом проверки закона обратной пропорциональности квадрату расстояния: сообщить большой заряд замкнутой металлической сфере или коробке иной формы и проверить наличие полей. За пределами коробки электроскоп обнаруживает сильное электрическое поле, могут даже вылетать искры. Внутри коробки электрического поля, обусловленного внешними зарядами, нет.

Для более надежного обнаружения поля воспользуйтесь двумя маленькими шариками на изолирующих рукоятках. Поместите их незаряженными в исследуемую область. Коснитесь одним шариком другого, затем разведите их и проверьте на каждом наличие заряда (фиг. 87). Замкнутая металлическая коробка представляет собой идеальный экран для электрических сил (клетка из проволочной сетки почти так же хороша в этом отношении). Если она достаточно велика, то экспериментаторы могут спокойно работать в ней в условиях полной экранировки. Вы, наверное, замечали небольшие металлические экраны такого типа вокруг некоторых деталей вашего радиоприемника.

Приведенное подробное доказательство не нужно считать чем-то столь важным, что требуется помнить всю жизнь. Это характерный пример цепи научных рассуждений, ведущей от предположения о справедливости некоего закона к проведению его решающей проверки.


Алгебра

Приведем значительно более краткое и изящное доказательство. Предположим, что сила взаимодействия зарядов подчиняется степенному закону вида F ~ 1/d>2. Оба узких конуса вырезают на поверхности шара области с зарядами Q>1 и Q>2Q>1/Q>2 = d>1>2/d>2>2, исходя из геометрии и соображений симметрии. Обе области действуют на пробный заряд q с противоположно направленными силами F>1 и F>2, такими, что

F>1/F>2 = (Q>1/d>1>n)/(Q>2/d>2>n) = (Q>1/Q>2)/(d>2>n/d>1>n)

Если эти силы равны и противоположно направлены, то F>1/F>2 = 1 и (Q>1/Q>2)/(d>2>n/d>1>n) = 1. Следовательно, d>1>n/d>2>n  = d>1>2/d>2>2 . Поэтому, чтобы силы взаимно уничтожались, должно быть n = 2.


ДЕМОНСТРАЦИОННЫЙ ОПЫТ

Измерение кулоновской постоянной


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Штурм неба

Воздушную оболочку Земли — атмосферу — образно называют воздушным океаном. Велик этот океан. Еще не так давно люди, живя на его дне, почти ничего не знали о строении атмосферы, о ее различных слоях, о температуре на разных высотах и т. д. Только в XX веке человек начал подробно изучать атмосферу Земли, раскрывать ее тайны. Много ярких страниц истории науки посвящено завоеванию воздушного океана. Много способов изыскали люди для того, чтобы изучить атмосферу нашей планеты. Об основных достижениях в этой области и рассказывается читателю в нашей небольшой книге.


Мистер Томпкинс внутри самого себя

В книге, одним из авторов которой является известный американский физик Г. Гамов, в доступной и увлекательной форме рассказывается о достижениях на стыке физики и биологии. Данная книга рассчитана на учащихся старших классов и студентов начальных курсов университетов самых разных специальностей.


Неизбежность странного мира

Научно-художественная книга о физике и физиках. Эта книга — нечто вроде заметок путешественника, побывавшего в удивительной стране элементарных частиц материи, где перед ним приоткрылся странный мир неожиданных идей и представлений физики нашего века. В своих путевых заметках автор рассказал о том, что увидел. Рассказал для тех, кому еще не случалось приходить тем же маршрутом. Содержит иллюстрации.


Революция в физике

Луи де Бройль – крупнейший физик нашей эпохи, один из основоположников квантовой теории. Автор в очень доступной форме показывает, какой переворот произвела квантовая теория в развитии физики наших дней. Вся книга написана в виде исторического обзора основных представлений, которые неизбежно должны были привести и действительно привели к созданию квантовой механики. Де Бройль излагает всю квантовую теорию без единой формулы!Книга написана одним из знаменитых ученых, который сам принимал участие в развитии квантовой физики еще, когда она делала свои первые шаги.


В поисках кота Шредингера. Квантовая физика и реальность

Книга знаменитого британского автора Джона Гриббина «В поисках кота Шредингера», принесшая ему известность, считается одной из лучших популяризаций современной физики.Без квантовой теории невозможно существование современной науки, без нее не было бы атомного оружия, телевидения, компьютеров, молекулярной биологии, современной генетики и многих других неотъемлемых компонентов современной жизни. Джон Гриббин рассказывает историю всей квантовой механики, повествует об атоме, радиации, путешествиях во времени и рождении Вселенной.


Коснуться невидимого, услышать неслышимое

В книге обобщены представления о деятельности органов чувств, полученные с помощью классических методов, и результаты оригинальных исследований авторов, основанных на использовании в качестве раздражителя фокусированного ультразвука. Обсуждаются вопросы, связанные с применением фокусированного ультразвука для изучения тактильных, температурных, болевых и слуховых ощущений человека, с его действием на зрительную и электрорецепторную системы животных. Рассмотрены некоторые аспекты клинико-диагностического применения фокусированного ультразвука, перспективы изучения и протезирования сенсорных систем с помощью искусственных раздражителей.