Физика для любознательных. Том 3. Электричество и магнетизм. Атомы и ядра - [26]

Шрифт
Интервал

1) Поднесите металлическую пластинку на очень близкое расстояние к заряженному диску. (Не беда, если она коснется диска, поскольку диск — изолятор.)

2) Коснитесь одним пальцем металлической пластинки, присоединив ее (через руку, тело, подошвы обуви) на мгновение к земле. Затем уберите палец.

3) Снимите пластинку с диска. Пластинка теперь заряжена и легко может отдать часть заряда другим телам при соприкосновении с ними.

Сейчас нам кажется это бессмысленным занятием, чем-то вроде колдовского ритуала. Мы воспользуемся этим процессом для получения зарядов и объясним его позже, хотя вы могли бы отгадать объяснение, используя то, что уже знаете.

Заряд на диске остается неизменным, поэтому процесс можно повторить и получить бесконечный поток зарядов, поступающих на пластинку. Как вы думаете, откуда берется энергия?


Опыты с заряженной пластинкой, электроскопом и пробным шариком

Если заряженную пластинку электрофора поднести на близкое расстояние к чьему-нибудь вытянутому пальцу или к носу, то возникает искра, и пластинка теряет свой заряд. Человек, к которому поднесли пластинку, испытывает легкий электрический удар, но не остается заряженным, если он не стоит на изолирующей подставке.

Пластинку можно заряжать повторно и сообщать с помощью нее заряд какому-нибудь металлическому предмету, пока он почти не перестанет воспринимать заряд при дальнейших прикосновениях[43]. При прикосновении к такому заряженному предмету можно вызвать большую искру и ощутить электрический удар. Если к этому предмету прикоснуться другим изолированным металлическим предметом или соединить оба тела влажной нитью, или металлической проволокой, то часть заряда первого тела перейдет ко второму. При распределении заряда между нашим металлическим предметом и землей предмет, по-видимому, теряет весь заряд: если распределение происходит в пропорции к размерам, то на нем, действительно, останется немного.

Воздушным шарикам с металлическим покрытием, подвешенным на шелковых нитях, можно сообщить большие заряды и наблюдать отталкивание между ними. Можно изготовить электроскоп[44] «с золотыми листочками», подвесив на изоляторе одну или две полоски из тонкого листового металла. Это чувствительный прибор, служащий для обнаружения электрических зарядов. Он измеряет силу, действующую на листочек из-за наличия на нем заряда, благодаря уравновешиванию этой силы определенной долей силы тяжести. Электроскоп обычной конструкции состоит из металлического стержня, к которому привешен тонкий листочек. Стержень укреплен при помощи изолирующей пробки в верхней части металлического корпуса. Стержень заканчивается вверху за пределами корпуса шаром или пластинкой, через которые легко сообщить заряд листочку. Даже если просто поднести заряд на близкое расстояние, листочек отклоняется и остается в таком положении, пока заряд остается поблизости[45].

Чтобы перенести пробные заряды с какого-либо большого заряженного тела к листочку электроскопа, мы пользуемся маленьким пробным шариком. Каждая новая порция заряда увеличивает отклонение листочка. Если сообщить листочку некоторое количество положительного заряда, а потом подвести к нему небольшую порцию отрицательного заряда, то листочек слегка опустится. Это дает основание полагать, что новый заряд нейтрализовал какую-то долю прежнего. Таким образом, обозначения «+» и «—» оказываются вполне подходящими. Это дает в наше распоряжение простой способ обнаружения положительных и отрицательных зарядов.

С помощью пробного шарика и электроскопа можно исследовать распределение «плотности заряда», на поверхности какого-либо заряженного тела. Мы убеждаемся в том, что заряд распределяется неравномерно. Наибольшую величину поверхностная плотность заряда имеет на остриях, наименьшую — на вогнутостях. Продолжая эти наблюдения, зарядим полый металлический цилиндр и исследуем его. Оказывается, на внешней поверхности может быть распределено большое количество заряда, а на внутренней поверхности заряд отсутствует.



Фиг. 59.Электрические заряды.

>а и б — удар током; в — между воздушными шариками, заряженными посредством многократного применения электрофора, наблюдается отталкивание. Воздушные шарики должны иметь проводящую поверхность, для этого их покрывают тонким слоем металла или графита. 



Фиг. 60.Электроскоп.



Фиг. 61. Распределение заряда.

>а — исследование распределения заряда на проводнике; б — область со знаками «+» изображает поверхностную плотность заряда; в — распределение заряда на наружной и внутренней поверхностях заряженного полого металлического стакана.


Задача 1

На изолирующую подставку помещен незаряженный металлический стакан. Внутрь стакана на шелковой нити опускают заряженный металлический шар, касаются шаром стакана изнутри и извлекают шар.

а) Какое количество заряда останется на шаре?

б) Какое количество заряда останется на шаре, если он касается стакана снаружи, а не изнутри?


Электростатическая индукция

Простое приближение заряда к электроскопу вызывает известный эффект. Исследуем этот эффект (его называют «наведением» или «индуцированием» зарядов, или «электростатической индукцией»). Зарядим большой металлический шар и поместим его вблизи от длинного металлического цилиндра с закругленными торцами. Возьмем маленький пробный шарик и электроскоп и посмотрим, какие заряды имеются на цилиндре. Предположим, что большой шар заряжен положительно. В этом случае мы обнаружим на ближнем конце цилиндра отрицательный заряд, у середины заряд отсутствует или его мало, а дальний конец цилиндра будет заряжен положительно. Мы считаем, что эти положительные и отрицательные заряды с самого начала имелись в незаряженном цилиндре и что произошло их разделение под влиянием заряда большого шара. Заряды свободно перемещаются по цилиндру, поэтому положительный заряд большого шара притягивает отрицательные заряды и отталкивает от себя положительные. Соедините теперь цилиндр с землей, коснувшись его пальцем. Уберите палец и снова посмотрите, как заряжен цилиндр. На цилиндре по-прежнему будет отрицательный заряд у конца, ближайшего к шару; положительных зарядов на удаленном конце цилиндра нет. Мы говорим, что они ушли через наш палец дальше, «на землю». (Путь зарядов: рука — тело — ноги — сырая обувь — сырой пол и т. д.). Как вы знаете, это движение зарядов можно продемонстрировать с помощью микроамперметра. Теперь уберите большой шар, на котором по-прежнему имеется положительный заряд. На цилиндре останется отрицательный заряд, плотность его на концах будет очень велика. Мы «создали» отрицательный заряд на цилиндре (без потери первоначального положительного заряда на большом шаре). Этот отрицательный заряд можно снять и как-то использовать. Описанный процесс можно повторить сколько угодно раз, получая порции отрицательных зарядов, которые могут быть посланы по проволоке в виде тока малой величины. Обратите внимание на последовательность наших действий после того, как мы зарядили большой шар: 1) приближаем к шару металлический цилиндр, 2) касаемся на мгновенье цилиндра пальцем, 3) убираем цилиндр и убеждаемся в наличии на нем заряда, который можно использовать. Этот процесс называют


Еще от автора Эрик Роджерс
Физика для любознательных. Том 1. Материя. Движение. Сила

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Физика для любознательных. Том 2. Наука о Земле и Вселенной. Молекулы и энергия

Эрик Роджерс — "Физика для любознательных" в 3-х томах. Книги Роджерса могут представить интерес в первую очередь для тех читателей, которые по своей специальности далеки от физики, успели забыть школьный курс, но серьезно интересуются этой наукой. Они являются ценным пособием для преподавателей физики в средних школах, техникума и вузах, любящих свое дело. Наконец, "Физику для любознательных" могут с пользой изучать любознательные школьники старших классов.


Рекомендуем почитать
Покоренный электрон

В книге рассказывается история главного героя, который сталкивается с различными проблемами и препятствиями на протяжении всего своего путешествия. По пути он встречает множество второстепенных персонажей, которые играют важные роли в истории. Благодаря опыту главного героя книга исследует такие темы, как любовь, потеря, надежда и стойкость. По мере того, как главный герой преодолевает свои трудности, он усваивает ценные уроки жизни и растет как личность.


Играют ли коты в кости? Эйнштейн и Шрёдингер в поисках единой теории мироздания

Многие физики всю свою жизнь посвящают исследованию конкретных аспектов физического мира и поэтому не видят общей картины. Эйнштейн и Шрёдингер стремились к большему. Поиски привели их к важным открытиям: Эйнштейна — к теории относительности, а Шрёдингера — к волновому уравнению. Раздразненные найденной частью решения, они надеялись завершить дело всей жизни, создав теорию, объясняющую всё.Эта книга рассказывает о двух великих физиках, о «газетной» войне 1947 года, разрушившей их многолетнюю дружбу, о хрупкой природе сотрудничества и открытий в науке.Пол Хэлперн — знаменитый физик и писатель — написал 14 научно-популярных книг.


Квантовая модель атома. Нильс Бор. Квантовый загранпаспорт

Нильс Бор — одна из ключевых фигур квантовой революции, охватившей науку в XX веке. Его модель атома предполагала трансформацию пределов знания, она вытеснила механистическую модель классической физики. Этот выдающийся сторонник новой теории защищал ее самые глубокие физические и философские следствия от скептиков вроде Альберта Эйнштейна. Он превратил родной Копенгаген в мировой центр теоретической физики, хотя с приходом к власти нацистов был вынужден покинуть Данию и обосноваться в США. В конце войны Бор активно выступал за разоружение, за интернационализацию науки и мирное использование ядерной энергии.


Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез

Джеймс Клерк Максвелл был одним из самых блестящих умов XIX века. Его работы легли в основу двух революционных концепций следующего столетия — теории относительности и квантовой теории. Максвелл объединил электричество и магнетизм в коротком ряду элегантных уравнений, представляющих собой настоящую вершину физики всех времен на уровне достижений Галилея, Ньютона и Эйнштейна. Несмотря на всю революционность его идей, Максвелл, будучи очень религиозным человеком, всегда считал, что научное знание должно иметь некие пределы — пределы, которые, как ни парадоксально, он превзошел как никто другой.


Охотники за нейтрино. Захватывающая погоня за призрачной элементарной частицей

Эта книга – захватывающий триллер, где действующие лица – охотники-ученые и ускользающие нейтрино. Крошечные частички, которые мы называем нейтрино, дают ответ на глобальные вопросы: почему так сложно обнаружить антиматерию, как взрываются звезды, превращаясь в сверхновые, что происходило во Вселенной в первые секунды ее жизни и даже что происходит в недрах нашей планеты? Книга известного астрофизика Рэя Джаявардхана посвящена не только истории исследований нейтрино. Она увлекательно рассказывает о людях, которые раздвигают горизонты человеческих знаний.


Климатическая наука: наблюдения и модели

Ричард МурКлиматическая наука: наблюдения и модели.21.01.2010Источник: Richard K. Moore, Gglobal ResearchClimate Science: Observations versus ModelsПеревод: Арвид Хоглунд, специально для сайта "Война и Мир".Теория парниковых газов якобы ответственных за катастрофическое глобальное потепление не согласуется с фактами и является политической спекуляцией на реальной науке. Рассматривается фактическая картина современного климата по доступным данным.